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Summary 

 

Stress-strength model is one of the most important models that 
measures the reliability of the product in many practicing engineers. The 
problem of the stress-strength model is originated in the context of reliability 
of a component has strength X subject to a stress ,Y the component failing if 
and only if at any time the applied stress is greater than its strength. In this 
case the stress-strength reliability function is noted by ).<(= XYPR  

In this thesis, we study the statistical inference for the stress-strength 
parameters ,)<(= XYPR for two different statistical distributions from 
complete samples. The estimation of R  for Quasi Lindley and 
Exponentiated Generalized Inverse Weibull distributions is proposed. Two 
methods of estimation are suggested; Maximum Likelihood estimation 
(MLE), and Bayesin estimation methods. Also, the asymptotic confidence 
interval for R based on the MLE is obtained. Bayesian estimator of R  is 
obtained using two methods of Markov Chain Monte Carlo (MCMC) 
technique; (Importance Sampling, Metroplis Hastings), under different loss 
functions. Simulation is used for the purpose of illustration and comparing 
the different estimators according to the bias and the mean square error 
(MSE), also some real data examples are presented. 

 
The thesis consists of three chapters: 

 
Chapter 1: this chapter represents an overview of the research work 

undertaken in this thesis. A simple definitions and concepts for reliability, 
stress-strength model, multi-component stress-strength reliability are 
introduced . Some methods of the parameter estimation are presented. We 
mention the Monte Carlo techniques, which will be used in the next chapters 
for developing Monte Carlo approximations for Bayesian estimation. We 
also provide some important distributions that used in work. At the end of 
this chapter a literature of the previous studies is presented.  

 
Chapter 2: in this chapter, we discuss the estimation of the stress-

strength reliability using the maximum likelihood and Bayesian estimation 
methods, when X and Y  both follow a Quasi Lindley distribution (QLD) 
with different parameters. Multi-component stress-strength reliability 



 
 

function is also derived. Stress-strength reliability is studied using the 
maximum likelihood, and Bayes estimations. We obtained the 95%  
asymptotic confidence intervals of R . Bayesian estimations were proposed 
using two different methods: Importance Sampling technique and 
Metropolis-Hastings algorithm, under symmetric loss function (squared 
error) and asymmetric loss functions (linex, general entropy). The behaviors 
of the maximum likelihood and Bayes estimators of stress-strength 
reliability have been studied through the Monte Carlo simulation study. 
Finally analysis of a real data set has also been presented.  

 
The results of this chapter were published at: 

"Journal of Advances in Systems Science and Applications (ASSA), 
2018, 4, 39-51." 

 
Chapter 3: this chapter presents the stress-strength reliability when X  

and Y have an Exponentiated Generalized Inverse Weibull distribution 
(EGIW) with different parameters. The problem of stress-strength reliability 
is studied to obtain the reliability function of the parameters of EGIW 
distribution. Reliability for multi-component stress-strength model for 
EGIW distribution is also studied. Maximum likelihood estimation for 
stress-strength reliability is performed. Bayesian estimator of R  is obtained 
using Importance Sampling technique under the squared error loss function. 
A simulation study to investigate and compare the performance of each 
method of estimation is performed. Finally analysis of a real data set has 
also been presented for illustrative purposes. 

 
The results of this chapter were published at: 
 "Journal of Statistics Applications and Probability, 2018, 7, 1-10."  
 
The lists of references arranged alphabetically, and publications out of 

this research study are provided towards the end of the thesis. 
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CHAPTER 1 
 

INTRODUCTION 

 

This chapter represents a brief review about some definitions and 
concepts of reliability,stress-strength reliability, multi-component stress-
strength reliability. Also, we will reviewsome methods of estimation that 
will be used in our thesis. In addition, we propose some Monte Carlo 
techniques for developing Monte Carlo approximations which willl be used 
in Bayesian computations. 

 

1.1Reliability Concepts and Principles 

Meeker and Escobar (1998) have defined the reliability as; the 
probability that a component, part, equipment, or system will satisfactorily 
perform its intended function under given circumstances, such as 
(environmental conditions, limitations as to operating time, frequency and 
thoroughness of maintenance), for a specified period of time. 

According to this definition, the basic elements of reliability are 
probability, adequate performance, duration of adequate performance and 
operating conditions. The above definition covers all four aspects of product, 
unlike quality, which speaks only according to specifications. In other words 
reliability is quality over time, which is under the influence of time and 
environment. Unlike quality, which is a degree of confirmation alone not 
considering the time length and environment of operation.  

Another important difference between quality and reliability is that one 
can manufacture reliable systems using less reliable components. This by 
altering product configuration, whereas it is not possible to manufacture high 
quality systems with less quality components. Adding one or more similar 
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components in parallel can increase the reliability of the system. 

Any system will be absolutely reliable of some undesirable events, 
called failures, do not occur in the system’s operation. A failure is the partial 
or total loss or change in the properties of a device in such a way that its 
functioning is seriously affected or totally stopped. Every system has its own 
set of such undesirable events. For example, a failure of a watch may be 
defined as a delay exceeding 5 sec over a 24-h period.  

For a mechanical system, a failure is a breakdown (a crack) of some of 
its parts or an increase in vibration above the permitted level, etc. One of the 
most dangerous failures of a nuclear reactor is a leak of a radioactive 
material. For a missile, the failure could mean missing the target or 
exploding before hitting it.  

 

1.1.1Reliability function(Survival function) 

We first examine reliability as a function of time, and this leads to the 
definition of hazard rate, which is a very important concept in reliability 
work. Examining the time dependence of hazard rates allows us to gain 
insight into the study of failures. This characteristic is very useful in the 
nature of reliability. Similarly, the time dependence of failures can be 
viewed in terms of failure modes to differentiate between failures caused by 
different mechanisms. 

Reliability can be expressed in terms of the time to failure T , as 
following:  

).(1=)>(=)( tFtTPtR                      (1.1) 

Thus, reliability is the probability of no failures (survive) in the interval 
],0[ t or, in other words, the probability of failure after time t . However, 

most of the time T  will be a continuous random variable and its distribution 
)(tF  will be a continuous distribution having a density function )(tf , so the 
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reliability can be written as:  

.)(=

)(1=

)(=)(

0

dttf

dttf

tFltR

t

t










                        (1.2)

 

Figure 1.1 presents the relationship between )(tf , )(tF , and )(tR

graphically.  

 
Figure 1.1: Relationship between )(tf , )(tF , and )(tR  

 

1.1.2  Failure rate function (Hazard function) 

Sometimes it is difficult to assign the distribution function of T directly 
from the physical information that is available. A useful function in 
clarifying the relationship between physical modes of failure and the 
probability distribution of T is the conditional density function )(th , which 

called the hazard function or failure rate function. 

The hazard function is defined as the instantaneous conditional 
probability of failure in a small interval of time )( tt   divided by the width 

of the interval.  



 

4 
 

.
)>(

)<<(
lim=

)>/<<(
lim=)(

0

0

ttTP
ttTtP

t
tTttTtPth

t

t











               (1.3)

 

Since,  

),>(=)( tTPtR  

and  

).()(=
)<()<(=)<<(

ttRtR
tTPttTPttTtP




 

Then the hazard function )(th becomes,  

.
)(
)(=

)]([
)(

1=

)(
1)()(

lim=)(
0

tR
tf

tR
dt
d

tR

tRt
ttRtRth

t







                 (1.4)

 

In some situations there is interest in a function called cumulative 
hazard function.  

.
)(1

)(=

)(=)(

0

0

dt
tF

tf

dtthtH

t

t





                        (1.5)

 

It is seen that

dt
tRd

tR
tRth

))(ln(=

)(
)(=)(





 
 

then,     )(ln=)(and=)( )( tRtHetR tH 
                  (1.6) 
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Thus the condition that 1)( tR  indicates that .0)( tH  The cumulative 

hazard has been proposed as an effective characteristic to use as a basis for 
the determination of the failure distribution through the use of plotting 
techniques (see, for example, Nelson (1972) or Nelson (1982)).  

 

1.2  Stress-Strength Reliability Model 

Stress-strength reliability model is one of the most important models 
that measure the reliability of the product. The term "stress" mean any 
applied load or load-induced response quantity that has the potential to cause 
failure. The stresses that cause the failure mechanism can be mechanical (as; 
deformation, fracture, rupture), electrical(as; electrostatic discharge, 
dielectric breakdown, junction breakdown in semiconductor devices, hot 
electron injection, surface and bulk trapping, surface breakdown), 
thermal(as; heating temperature, thermal expansions and contractions), 
radiation(as; radioactive containment, secondary rays), and/or chemical(as; 
corrosion, oxidation).  

Often an item failure can be the result of interactions among these 
various types of stresses. Temperature has a strong effect on the failure of 
electronic components. Lall (1996) discussed the effect of temperature on 
the reliability of microelectronics. The term "strength" mean the ability of 
the component or system to withstand the applied load ("stress"). 

It is a well accepted fact that the strength of a manufactured unit is a 
variable quantity that should be modeled as a random variable. This fact 
forms the basis for all reliability modeling. A second source of variability 
may also have to be taken into account, when checking the reliability of 
equipment on the viability of a material, it is also necessary to take into 
account the stress conditions of the operating environment. 
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That is, uncertainty about the actual environmental stress to be 
encountered should be modeled as random. The expression stress-strength 
model makes explicit that both stress and strength are treated as random 
variables. 

If X  is the strength of a system (or component) which is working 
under a stress Y , both X and Y are generally assumed to be random 
variables, then stress-strength reliability R of the system is defined as:  

).<(= XYPR                             (1.7) 

Assume X , and Y  are statistically independent random variables with 
pdf )(xf and )( yg , respectively, then the stress-strength reliability can be 

obtained as:  

).<(= XYPR  

.),(= dydxyxf
x
 




 

.)()(= dydxygxf
x
 




 

.)()(= dxxGxf y


                        (1.8)
 

 

1.3  Reliability for Multi-Component Stress-Strength Model 

Several methods exist to improve the system reliability like using large 
safety factors, reducing the complexity of the system, increasing the 
reliability of the components, etc. Reliability of a system can be improved 
by adding one or more similar components in a certain configuration. There 
are several types of configurations available, such as, series configuration, 
parallel configuration, mixed configuration, series-parallel configuration, 
parallel-series configuration, ks  ofout configuration, and others. 
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Bhattacharya and Johnson (1974) have suggested a system consisting 
of k identical components and defined a multi-component ks  ofout
stress-strength model. Bhattacharya and Johnson (1975) study the condition 
where a system, consist of k components, functions when at least 

ks  ofout components survive a common chock of a random 
magnitude.  

Let the random samples kXXXY ,,,, 21   be independent, )( yG be the 

cumulative distribution function of stress Y and )(xF  be the common 

cumulative distribution function of strengths kXXX ,,, 21  . The reliability 

for a multi-component stress-strength model is given by:  

]exceed),,,(theofleastat[= 21, YXXXsPR kks   

).()]([)]([1=
0

=
ydGyFyF

i
k iki

k

si











  (1.9) 

 Stress-strength reliability is estimated to obtain the reliability function 
of the parameters for each used distribution. Two methods of estimation are 
used maximum likelihood and Bayesian estimations.  

 

1.4  Some Applications of Stress-Strength Models 

  In their landmark book on stress-strength models, Kotz et.al (2003) 
detail many examples of stress-strength models in a survey of scientific 
literature. These include such applications as: 

Reliability of rocket engines: 

When X is the strength of a rocket chamber and Y stands for the 
maximal chamber pressure which is generated when a solid propellent is 
ignited, )<( XYP  is the probability that the engine will be fired 

successfully. 
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Earthquake Resistance:  

The strength stress model was used to study the risk of an earthquake 
posed to a particular nuclear generator. With no concrete numbers to define 
the strength, the researcher took strength estimates from five experts and 
used the log-normal distribution as a model and a weighted least squares 
procedure to estimate the strength. A similar procedure was used for the 
stressor, and the conclusion 0.99978=)<( lnXlnYP  was reached a very 

reassuring number, if accurate. 

In a medical study: 

The reaction of leprosy patients to a medicine was modeled on a 
)<( XYP  stress-strength model. Initial condition (infiltration status) was 

taken as X , and Y the change in health after 48 weeks of treatment. The null 
hypothesis, that initial infiltration values did not affect outcomes, was 
strongly rejected after an analysis of the data.  

 

1.5  Methods of Estimation 

Estimation is one of the important problems in statistical inference, that 
using a sample of data to guess or estimate the characteristics(parameters) 
for a population model from which the data are assumed to arise. When you 
want to determine information about a particular population characteristic 
(for example, the mean), you usually take a random sample from that 
population because it is difficult to measure the entire population. Using that 
sample, you calculate the corresponding sample characteristic, which is used 
to summarize information about the unknown population characteristic. 

The population characteristic of interest is called a parameter and the 
corresponding sample characteristic is the sample statistic or parameter 
estimate. Because the statistic is a summary of information about a 
parameter obtained from the sample, the value of a statistic depends on the 
particular sample that was drawn from the population. Its values change 
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randomly from one random sample to the next one, therefore a statistic is a 
random quantity(variable). 

The objective of statistical estimation is to assign numerical values to 
the parameter based on the sample data. There are two main methods of 
estimation point estimation and interval (or confidence interval) estimation.  

 

1.5.1  Point estimation 

Point estimation is to estimate one value for the unknown parameter 
from the desired distribution to choose an estimator. A number of properties 
that evaluate the performance of the procedure in the context of the assumed 
distribution function are considered. We look at a few of these in the next 
subsection. 

Properties of best estimator 

 Now, we define some basic properties that must be satisfied for the 
point estimator to be good. 

1- Unbiased. 

A point estimator is unbiased for a parameter if the mean(expectation) 
of the estimator’s sampling distribution equals the value of the parameter; 

i.e.  =)ˆ(E , otherwise, the estimator is biased. 

2- Minimum MSE. 

The mean square error(MSE) of ̂ (the estimator of  ) is the expected 

value of 2)ˆ(   .  

 2)ˆ(=)ˆ(  EMSE                      (1.10) 

MSE is a measure to the goodness of a point estimator, it is always 
non-negative, and values closer to zero are better. 

3- Consistency. 

An estimator ̂ of  , is said to be consistent if for any 0>  and all 
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possible values of  , 0)|>ˆ(|  P  as n .Then for a consistent 

estimator the probability that the estimate will deviate from the true value by 
any amount, no matter how small, approaches zero as the sample size 
becomes increasingly large; i.e., for large samples the estimate will be very 
close to the true parameter value with high probability. 

4-Sufficiency. 

An estimator ̂  ،of   is sufficient if the conditional distribution of the 
random sample nXXX ,,, 21   given   does not depend on  . This implies 

that the estimator contains all information in the sample about the parameter. 
It is sufficient to know its value; given that, no additional information about 
  is contained in the data. 

5- Efficiency.  

The efficiency of an estimator is measured in terms of its variability. 
The rationale is that use of an inefficient estimator requires more data to do 
as well and hence it costs less to use an efficient estimator. Efficiency of an 
estimator may be assessed relative to another estimator or estimators relative 
efficiency or relative to an absolute standard. 

Let 1̂  and 2̂  are two unbiased estimators of  , then 1̂  is more 

efficient than 2̂  if )ˆ(<)ˆ( 21  VarVar . 

6-Minimum Variance Unbiased Estimator (MVUE).  

An unbiased estimator ̂  of a parameter  , is said to be minimum 

variance unbiased if )()ˆ( * VarVar   for any other unbiased estimator *  

and for all possible values of  .Rao-Blackwell theorem is used to find the 
uniformly minimum variance unbiased estimator(UMVUE). 
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Theorem 1.1 (Rao-Blackwell Theorem) 

Let * an estimator of   with )ˆ( 2E  for all < . Suppose that T is a 

sufficient statistic for  , and let )/̂(=ˆ TE   is a function of the sufficient 

statistic for  , then for all  :  

.)()ˆ( 2*2   EE  

We now have a quantitative rationale for basing estimators on sufficient 
statistics: if an estimator is not a function of a sufficient statistic, then there 
is another estimator which is a function of the sufficient statistic and which 
is at least as good, in the sense of mean squared error of estimation.  

 

1.5.2  Maximum likelihood estimation 

  Given nXXX ,,, 21   an iid sample with probability density function 

);( ixf , where   is a 1)( k  vector of parameters that characterize 

);( ixf . The joint density of the sample is, by independence, equal to the 

product of the marginal densities:  

).;(=

);();();(=),,,(

1=

2121





 i

n

i

nn

xf

xfxfxfxxxf 

       (1.11)

 

The likelihood function is defined as the joint density treated as a 
functions of the parameters  .  

).;(=

),,,(=),,,/(

1=

2121





 i

n

i

nn

xf

xxxfxxxL 

             (1.12)

 

The maximum likelihood estimator (MLE ) denoted by mle , are the 

values of   that maximizes the likelihood function )/( ixL  .  
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,)/(= imle xLmaxarg                    (1.13) 

where 

}.,,,{= 21 k   
The maximum likelihood estimator(MLE) of the parameters   is 

obtained by differentiation of the likelihood function )/( ixL   with respect to 

these parameters and equal to zero. In practice, when finding the maximum 
likelihood estimator, it is often easier to find the value of the parameter that 
maximize the natural logarithm of the likelihood function )/( ix  rather than 

the value of the parameter that maximize the likelihood function itself.  

Because the natural logarithm is an increasing function, the solution 
will be the same. If )/( ix is differentiable with respectto the parameters, 

we can find the Ml estimator ̂of   as a solution of the system of equations;  

 0.=)/(=)/(




 ii xxlogL 

              (1.14) 

The obtained solutions are necessary critical points (maximum, 
minimum, or saddle point) of the log-likelihood function, To actually prove 

that the solution is a maximum, we need to show in scalar case 0)(
2

2





d
d   

for one parameter, or if   is a vector that the Hessian matrix )(H defined 

by  ,)()(
2

kkji
H


















  kji ,....,2,1,  is negative definite. 

The equation 0)(





d
d for scalar   or the system of equations

0)( 

 



j
,  for vector  has a unique root ),,(ˆ  if and only if, 
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0)( J  and 0)( J , where )()( 


 



J . 

If )(  has multiple local maxima, we pick the solution that is the 

highest of all the maximizers. For further information see Ghitany et al. 
(2014) and El-Din et al. (2017). 

The method of maximum likelihood is the most popular technique for 
deriving estimators, it find an estimation of the unknown parameter that give 
the max probability of the observed data. In our research, we not only 
estimate the parameters which is the characteristics of an distribution, but 
also estimate a function of these parameter. 

 Stress-strength reliability estimation is our problem, as shown in 
Eq.(1.8) that R is a function of the prameters of the probability density 
functions )(xf and )( yg , so the maximum likelihood function will be equal 

to the product of the marginal densities. 

Suppose that nXXX ,,, 21  are random samples from distribution , and 

mYYY ,,, 21  are random samples from another distribution, and X ,Y are 

independent and identically (iid) random samples, then likelihood function 
can be written as:  

 ),()(=),/(
1=1=

ygxfyxL
m

j

n

i


                (1.15)
 

where  is the estimated parameters which arises in )(xf and )( yg .  

Definition: Invariance property of maximum likelihood estimators 

 One of the attractive features of the method of maximum likelihood is 
its invariance to one-to-one transformations of the parameters of the log-

likelihood. That is, if ̂  is the MLE of   and )(= hg  is a one-to-one 

function of   then )ˆ(=ˆ hg is the MLE for g .Other estimates do not possess 

such an invariance property, like Bayes estimates.  
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Asymptotic Properties of Maximum Likelihood Estimators 

 Much of the interest of maximum likelihood estimators is based on 
their properties for large sample sizes. We summarizes some the important 
properties below; 

1.Consistency 

The estimate ̂  is called consistent if: 

0
ˆ    in probability as n ,  

where 0  is the true unknown parameter of the distribution of the sample. In 

words, as the number of observations increase, the distribution of the 
maximum likelihood estimator becomes more and more concentrated about 
the true state of nature. 

2.Asymptotic normality 

Using the Central limit theorem; we say that ̂  is asymptotically normal if:  

)).((0,)ˆ(( 1  INn
d

   as n ,  

where 
d
  means converge in distribution, and )(1 I  is the inverse of the 

Fisher information matrix .)(I  

 

The Fisher information Matrix  

 First we define the Hessian matrix, which is a kk   symmetric matrix 
whose element is given by of second derivatives of the log-likelihood 
function )/( Xl  .  
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       (1.16) 

 

The Fisher information matrix is defined as minus the expectation of 
the Hessian matrix:  

))./((=)/( XHEXI                     (1.17) 

This definition corresponds to the expected Fisher information matrix. 
If no expectation is taken we obtain a data-dependent quantity that is called 
the observed Fisher information. Fisher information matrix essentially 
describes the amount of information data provide about the unknown 
parameters. It used in finding the variance of an estimator, as well as in the 
asymptotic behavior of maximum likelihood estimates.  

 

1.5.3Interval Estimation 

In point estimation of a parameter or other population characteristic, we 
use a single number to estimate a parameter or a set of k numbers to 
estimate a k -dimensional parameters. For MLEs, we also gave MSE of the 
estimators, which is a measure of uncertainty in the estimate. A confidence 
interval (or confidence interval estimator) takes this uncertainty into account 
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by providing an estimate in the form an interval of numbers along with a 
measure of the "confidence" one has that the interval will, in fact, contain 
the true value of the parameter or characteristic being estimated. For k
parameters, a separate confidence interval may be calculated for each, or a k  
dimensional confidence region may be defined. 

In the case of a single parameter, say  , a confidence interval based on 
a sample of size n , nXXX ,,, 21   is defined as an interval defined by two 

limits, the lower limit ),,,( 211 nXXXL   and the upper limit 

),,,( 212 nXXXL   , having the property that  

 ,=),,,(),,,( 212211  nn XXXLXXXL        (1.18) 

where  (the confidence coefficient) is a constant with 1.<<0   

Then the confidence coefficients is the probability that the interval estimate 
will contain the parameter. Confidence is usually expressed in percent; e.g., 
if 0.95= , the result is a "95%"  confidence interval" for  . It is desirable 

in practice that the width of a confidence interval be small, i.e., that the 
result be precise in the sense that we can have high confidence that the true 
value of the parameter lies within a relatively narrow interval (or small 
region, in the multi-parameter case). 

In general, the width of the interval depends on the data and on the 
desired confidence. The width of the confidence interval has the following 
properties:   

    • Decreases as n increases.  

    • Increases as the confidence coefficient   increases.  

    • Decreases as the variability in the data decreases.  

Thus in theory, the width of the confidence interval can be controlled, 
but in practice this is not always easy. In particular, it usually means 
incurring the expense of obtaining large samples. 
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There are a lot of methods for interval estimation such as; Asymptotic 
confidence interval using the Fisher information matrix, HPD 
interval(highest posterior density), and bootstrap confidence interval, see 
Efron’s (2003). 

 

1.5.4Bayesian Estimation 

  Bayesian inference grows out of the simple formula known as Bayes 
rule. Assume we have two random variables A and B. A principle rule of 
probability theory known as the chain rule allows us to specify the joint 
probability of A and B taking on particular values a and b which gives us:  

Joint probability =  Conditional Probability  Marginal Probability. 

Thus we have:   

)()|(=),( bPbaPbaP                     (1.19) 

There is nothing special about our choice to marginalize B rather than 
A, and thus equally we have:  

)()|(=),( aPabPbaP                      (1.20) 

When combining the two equations (1.19),(1.20) we get:  

)()|(=)()|( aPabPbPbaP                 (1.21) 

rearranged as:  

.
)(

)()|(=)|(
bP

aPabPbaP
                     (1.22)

 

and can be equally written in a marginalized form as:  

.
)()|(
)()|(=)|(

adaPabP
aPabPbaP

                (1.23)
 

This expression is Bayes Rule, which indicates that we can compute the 
conditional probability of a variable A given the variable B from the 



 

18 
 

conditional probability of B given A. This introduces the notion of prior and 
posterior knowledge. 

A prior probability P(a) is the probability available to us beforehand, 
and before making any additional observations. A posterior probability 

)|( baP  is the probability obtained from the prior probability after making 

additional observation to the prior knowledge available. The additional 
observation was observing that B takes on value b. When dealing with 
parameter estimation,   could be a parameter needed to be estimated from 
some given evidence or data. The probability of data given the parameter is 
commonly referred to as the likelihood )|( dataL . And so, we can compute 

the probability of a parameter given the likelihood of some data, which 
called the posterior function.  

 .
)()|(
)()|(=)|(



 ddataL

dataLdata (1.24) 

 Thus the inference concerning   is then based on its posterior function 
)|( data .  

 

1.5.4.1  Prior distributions  

An important problem in Bayesian analysis is how to define the prior 
distribution. For prior distributions in Bayesian inference, the most used 
priors are conjugate and non informative priors, described as following:  

a- Conjugate priors 

A prior is said to be a conjugate prior when the prior and the posterior 
belong to the same distribution family. For example in the case of a binomial 
likelihood we have just seen that any beta prior we use will result in a 
posterior that is also a beta distribution. In this case the beta distribution is a 
conjugate prior for the Binomial likelihood. Conjugate priors are very useful 
as they provide simple analytic solution to this type of inference problem, 
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but they are also somewhat limiting since our prior belief may not be 
representable using the conjugate family’s parameterization.  

 

b- Non-informative priors 

Non-informative priors are used when relatively little information is 
available about prior sampling of the parameter  , thus, a prior is non-
informative if it has minimal impact on the posterior distribution of  . The 
uniform distribution is frequently used as a non-informative prior. In some 
cases, non-informative priors can lead to improper posteriors (non integrable 
posterior density). You cannot make inferences with improper posterior 
distributions .  

 

1.5.4.2  Loss function 

 Bayesian estimation is a special case of decision rule that minimizes 
the expected loss value, to achieve a minimum probability of error. Consider 

̂  is an estimator of  , loss function ),ˆ( Ls  is used as a measure of error, 

it is defined as a real-valued function that satisfying:   

    • 0),ˆ( Ls  for all possible estimators ̂  and all  .  

    • 0=),ˆ( Ls  for  =ˆ .  

 We obtain a Bayes estimate, ̂  of the parameter   by choosing a 

particular form of loss function, ),ˆ( Ls . To obtain the Bayes estimate first 

we need to find the posterior expected loss )),ˆ(( LsE  by 




ddataLs )|(),ˆ(  which is also known as the posterior risk for  .  

Then we minimize it with respect to ̂ . It is to be noted that different 
Bayes estimates of   will be obtained depending on the different loss 
functions.  
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Depending on the complexity of the loss function L and the posterior 

distribution )|( data , the value of ̂  may be determined analytically or 

numerically.  

In general, it is difficult to determine the value of ̂  analytically 
because of either the complicated posterior distribution or the complex loss 
functions. Nevertheless, there are some loss functions for which the 
analytical Bayes estimates are feasible. 

Three different types of loss functions are used in the next chapters, 
described as following:  

1-Squared error loss function (Se): 

It is a symmetric function given by  

2)ˆ(=),ˆ(  SeLs                       (1.25) 

Under the squared error loss function (Se), the Bayes estimate for   is 
the posterior mean which given by: 

.)(=ˆ  ESe  

.)|(= 


ddata (1.26) 

 2-Linex loss function (Lx): 

A very useful asymmetric loss function, introduced by Varian (1975), 
which mean linear-exponential loss function. It become approximately linear 
to one side of the origin, and approximately exponential to the other side.  

1.)ˆ()]ˆ([=),ˆ(   ccexpLsLx            (1.27) 

Where c is constant, 0c . The sign and the magnitude of c represent 
the direction and the degree of asymmetry, respectively. 

The Bayesian estimate under the linex loss function (Lx) is given by:  
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  ,))((1=ˆ  cexpEln
cLx 


                  (1.28)
 

provided that the expectation ))(( cexpE   is finite. Several papers have 

applied this loss function with different value for the constant c as; Zellner 
(1986), Basu and Ebrahimi (1991), Soliman (2000) and Parsian and 
Kirmani(2002). 
 

3-General entropy loss function (Ge): 

This loss function is asymmetric loss function,given by :  

 1.)
ˆ

()
ˆ

(),ˆ( 




 lnqLs q

Ge
               (1.29)

 

The Bayes estimate relative to the general entropy loss function (Ge) is 
given by:  

   .)(=ˆ 1/qq
Ge E

                     (1.30) 

where q is constant. 

For 1=q  the Bayesian estimate with (Ge) become the Bayesian 

estimate under the squared error loss function. Calabria and Pulcini (1994) 
used this function for a different values of q . Pandey and Rao (2009), and 

SankuDey (2010) have used this loss for Bayesian estimation. 
 

1.5.5  Monte Carlo methods for Bayesian computations 

  Monte Carlo methods is a class of computational algorithms that 
depend on repeated random sampling to obtain numerical approximations, 
often they used for evaluating complex integrals; see Smith(1991). Monte 
Carlo methods are based on random samples generated from a density 
related to a parameter of interest, which denoted by the posterior function in 
Bayesian estimate. The most popular method to do this today is the Markov 
Chain Monte Carlo (MCMC) method. 
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 MCMC is a class of methods for sampling a pdf using a Markov chain 
whose equilibrium distribution is the desired distribution. Once we have a 
sample distributed according to some desired distribution, we can compute 
expectation values and integrals of various quantities in a process analogous 
to Monte Carlo integration.  

For example; Combining Eq. (1.24), and Eq. (1.26) to get Bayesian estimate 
of   under squared error loss function, then we have the following equation:  

.)|(=ˆ 


ddataSe   









ddataL

ddataL

)()|(

)()|(
=

 ,              (1.31) 

where )|( dataL  is the likelihood function, and )(  is the prior function.  

The explicit evaluation for Eq. (1.31) is not possible, and become more 
difficult for the high dimensional parameters. Monte Carlo method provides 
a technique where we can sample from the posterior directly, then obtain 
sample estimate of this integral, thus we can perform the integration in 
implicit form. Some methods of Monte Carlo technique have been 
introduced as the following:  
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1.5.5.1  Gibbs sampling 

 The main basis MCMC method is Gibbs sampling, which is a special 
case of the Metropolis-Hastings (MH) algorithm that is very simple to use in 
practice. As discussed in Besag and Green (1993), the Gibbs sampler is 
founded on the ideas of Grenander (1983), while the formal term is 
introduced by Geman and Geman (1984). The primary bibliographical 
landmark for Gibbs sampling in problems of Bayesian inference is Gelfand 
and Smith (1990). Suppose we have a set of k  parameter vectors; 

k ,,,= 21  , where each k  could be a scalar or a vector of parameter, 

and let )/( data  be its posterior distribution given the data. Then, the basic 

algorithm of the Gibbs sampler is given as follows:   

    • Step1:   Choose an arbitrary starting value of i , and set 0=i .  

    • Step2:   Generate 1)(
1

i  from ).,,,/( 21 datai
k

i    

    • Step3:   Generate 1)(
2

i  from ).,,,,/( 3
1

12 datai
k

ii  
  

    • ..................  

    • Step4:   Generate 1)( i
k  from ).,,,,/( 1

1
1

2
1

1 datai
k

ii
k




    

    • Step5:  Set 1= ii , and go to Step 1.  

 The above conditional distributions are the transition distributions of a 
Markov chain that converges (under very general conditions) to a unique 
stationary target distribution that is the posterior distribution )/( data . The 

generic Gibbs sampler algorithm is to draw one value for each i  from its 

conditional distribution and cycle through these conditionals repeatedly. 
This approximation can be made arbitrarily accurate by increasing the 
sample size, k . Given that it is now computationally inexpensive to obtain 
tens of thousands of draws on any standard computer for all but the most 
complex and highly dimensional models, Gibbs sampling is an easy way to 
draw posterior inferences concerning any unknown quantities in a model.  
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1.5.5.2  Metropolis Hasting algorithm (MH) 

 The most general MCMC algorithm is the Metropolis-Hastings(MH) 
algorithm, which was originally introduced by Metropolis et al.(1953), and 
subsequently generalized by Hastings (1970). Tierney(1994) gives a 
comprehensive theoretical presentation of this algorithm, and Chib and 
Greenberg(1995)introduced an excellent tutorial on this topic. The 
Metropolis-Hastings (MH) algorithm simulates samples from a probability 
distribution by making use of the full joint density function and 
(independent) proposal distributions for each of the variables of interest.  

Suppose we are interested in sampling from the posterior distribution 
)data/( , MH algorithm uses a two step process:   

• Specify a proposal distribution ),( q .  

• Accept draws from ),( q  with acceptance ratio 








 ,1
),()/(
),()/(=),(




qD
qDmini

å . 

 Also let )1,0(U denote the uniform distribution over )1,0( , The 

Metropolis-Hastings algorithm for sampling from the posterior distribution
)/( D  can be described as follows:   

    • Step1:   Choose an arbitrary starting value of 0 , and set 0=i .  

    • Step2:   Generate a candidate point å  from ,...)( iq   and u from U(0,1).  

    • Step3:   Set 1i  å  if ),( å iu  , otherwise 1i  = i .  

    • Step5:   Set 1= ii , and go to Step 1.  

 

The above algorithm is very general. When )(=),(  qq , the 

Metropolis-Hastings algorithm reduces to the independence chain 
Metropolis algorithm(see Tierney 1994). The Gibbs sampler can also be 
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shown to be a special case of the MH algorithm that uses conditional 
distributions as proposal distributions with acceptance probability always 
equal to 1 (ߠ)ߙ௜, (åߠ = 1); see Geyer (2011).  

 

1.5.5.3  Importance Sampling technique (IS) 

 Importance sampling (IS) refers to a collection of Monte Carlo 
methods where a mathematical expectation with respect to a target 
distribution is approximated by a weighted average of random draws from 
another distribution. Together with Markov Chain Monte Carlo methods, 
Importance sampling has provided a foundation for simulation-based 
approaches to numerical integration since its introduction as a variance 
reduction technique in statistical physics; see; Hammersely and Morton 
(1954), and Rosenbluth and Rosenbluth (1955). Importance sampling 
Technique has suggested by Chen and Shao(1999). Nowadays, IS is used in 
a wide variety of application areas and there have been recent developments 
involving adaptive versions of the methodology. 

The principle idea of the IS estimation can be explained as following; 
Let )(xp  be a probability density for a random variable X and suppose we 

are interested in computing an expecation f , where:  

))((= XfEf  

.)()(= dxxpxf                     (1.32) 

 Sometimes, it is typically difficult to sample directly from )(xp , 

therefore in practice one usually resorts to drawing from the so called 
importance density )(xq  with the support including the one of the density of 

interest )(xp . It is assumed the sampling from )(xq  is relatively easy and 

inexpensive. This method of simulation based estimation is called 
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importance sampling (IS). Using )(xq , the expecation f  can be expressed 

in the following way:  

.)(
)(
)()(= dxxq

xq
xpxff   

}.
)(
)()({=

Xq
XpXfEq  

 )}.()({= xwXfEq                        (1.33) 

 Where qE  stands for expectation with respect to density )(xq  and 

)(xw  is known as the importance weight function. Therefore a sample of 

independent draws mxx ;;1   from q(x) can be used to estimate f  by  

).()(1=ˆ
1=

ii

m

i
f xwxf

m (1.34) 

In many applications the density )(xp  is known only up to a 
normalizing constant. Here one has )(=)( 0 xcwxw  where )(0 xw  can be 
computed exactly but the multiplicative constant c is unknown. In this case 
one replaces f̂  with the ratio estimate:  

 .
)(

)()(
=ˆ

1=

1=

i

m

i

ii

m

i
f

xw

xwxf




 (1.35) 

 Importance sampling is widely used in Bayesian computation, see 
Geweke (1989). This approach provides a focus on an important part of the 
posterior distribution, which is obtained first, by an appropriate weighting of 
draws, and second, by generating them from an optimal, tail-focused 
density. Geweke (1989) also provided guidelines on how to choose a good 
importance sampling density that has a shape similar to the desired posterior 
density. It is well-known that using importance sampling, one can easily 
approximate the posterior expectations.  
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1.6  Mentioned Statistical Distributions 

 We present here the two basic distributions that will be used in the 
subsequent chapters. 

1.6.1  Quasi Lindley Listribution (QLD) 

  The QLD which introduced by Shanker et al. (2013) of which the 
Lindley distribution is a particular case.  

The QLD has a pdf given by:  

,)(
1

=)( xexxf 

 
                (1.36)

 

 and CDF:  

,
1

)(11=)( 








  xexxF 




                (1.37)
 

 where 1.>0,>0,> x  

1.6.2  Exponentiated Generalized Inverse Weibull Distribution (EGIW) 

  The EGIW distribution which introduced by Elbatal and Muhammed 
(2014) as extension of exponentiated generalized family. 

The EGIW distribution has a pdf f(x) and CDF F(x):  
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1.7  Review of Literature 

  Several authors have discussed the problem of estimating the stress-
strength reliability assuming various lifetime distributions for the stress-
strength random variates. The term stress-strength was first introduced by 
Church and Harris (1970) which introduced the estimation of R when X and 
Y are normally distributed. Downtown (1973) suggested the minimum 
variance unbiased estimator of )<( XYP  as alternatives to the 

asymptotically equivalent estimator used by Church and Harris (1970) to 
obtain confidence intervals for that probability for the same distribution. 
Bhattacharya and Johnson (1974) have suggested a system consisting of ‘k’ 
identical components and introduced a multi-component s out of k stress-
strength model.  

Tong (1977) discussed the estimation of )<( XYP  for exponential 

families. Some inference results in )<( XYP  for the bivariate exponential 

model has been achieved by Awad et al. (1981). Pandey and Borhan (1985) 
presented the reliability in a multi-component stress-strength system when 
both stress and strength follow Burr distribution.  

Awad and Gharraf (1986) introduced a three estimators for )<( XYP  

when Y and X are two independent but not identically distributed Burr 
random variables. Kakati and Srivastav (1986) studied an accelerated life 
testing problem for the stress-strength model. The system reliability 
estimation in multi-component stress-strength systems has been discussed by 
Pandey and Upadhyay (1986) when stress and strength are Weibull 
distributions with equal scale parameters.  

Gupta and Gupta (1990) considered estimation of )>( YXP  in the 

multivariate normal case. McCool (1991) examined inference on )<( XYP  

in the case of Weibull distribution. Nandi and Aich (1994) have discussed 
the problem of estimating the reliability )<( XYP  that appears in stress-
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strength relationship where X follows an exponential distribution while Y 
has an inverse Gaussian / half normal / half Cauchy distribution.  

Pham and Almhana (1995) have presented basic properties of three 
parameter generalized gamma distribution,also introduced results on the 
hazard rate and stress-strength model of the generalized gamma distribution.  

Inference for )<( XYP  in the Burr type X model has been investigated 

by Surles and Padgett (1998, 2001). Gupta and Brown (2001) introduced 
reliability studies of the skew-normal distribution and its application to 
stress-strength models. A good application on the different stress-strength 
models can be found in the research by Kotz et al.(2003).  

Some of studies on the stress-strength model can be obtained in Kundu 
and Gupta (2005,2006), Raqab and Kundu (2005), which considered this 
problem when X and Y are generalized exponential, weibull and Burr type X 
distributions respectively. The reliability of a stress-strength model with 
Burr type III distribution has been discussed by Mokhlis (2005).  

Kantam et al.(2007) introduced stress-strength reliability model in log-
logistic distribution. Krishnamoorthy et al. (2007) introduced an inference 
on reliability in two-parameter exponential stress-strength model. Raqab et 
al.(2008) introduced the estimation of )<( XYP  for the three-parameter 

generalized exponential distribution. Stress-strength reliability for three-
parameter Weibull distribution has been discussed by Kundu and Raqab 
(2009).  

Gupta et al.(2010) derived the estimation of reliability from Marshall-
Olkin extended lomax distribution. Estimation of stress-strength reliability in 
multi-component model for log-logistic distribution has been discussed by 
Srinivasa and Kantam (2010).  

Stress-strength reliability for Lindley and weighted Lindley 
distributions considered by Al-Mutairi et al. (2013), (2015) respectively. 



 

30 
 

Singh et al.(2014) introduced the estimation of )<( XYP  for generalized 

Lindley distribution. Khan et al. (2015) studied the estimation of stress-
strength reliability model using finite mixture of two parameter lindley 
distributions.  

Recentely; Hanagal and Bhalerao(2016) discussed generalized inverse 
Weibull software reliability growth model. 

Actually, it is impossible to mention here every author who contributed 
to the development of stress-strength model.  
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CHAPTER 2 

Estimation of Stress-Strength Reliability for the Quasi Lindley 

Distribution 

 

2.1   Quasi Lindley Distribution (QLD) 

As mentioned at the end of chapter 1, Lindley distribution and all 
distributions that relate to it have been widely used for studies on stress-
strength reliability. For example; Al-Mutairi et al.(2013),(2015) presented 
the stress-strength reliability for Lindley and weighted Lindley distributions 
respectively. Stress-strength reliability estimation for generalized lindley 
distribution has been introduced by Singh et al.(2014). Recentely Khan et al. 
(2015) studied the estimation of stress-strength reliability model using finite 
mixture of two parameter lindley distributions.  

This chapter is focused upon upon studying the problem of the 
estimation of the stress-strength reliability for the QLD introduced by 
Shanker et al. (2013) of which the Lindley distribution is a particular case. 
We will estimate the parameter of the stress-strength reliability R using the 
maximum likelihood, and Bayesian estimation methods. The asymptotic 
confidence interval of R will be computed based on the asymptotic 
distribution of the MLE of R . In Bayesian estimation we will introduce two 
sampling methods (Importance Sampling and Metrolopis-Hastings).  

The QLD has a pdf given by:  

 ,)(
1

=)( xexxf 

 


 (2.1) 

 and CDF:  

 ,]
1

)(1[1=)( xexxF 


 


  (2.2) 
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where;  

 1.>0,>0,> x  

It can easily be seen that at  = , Eq.(2.1) reduces to the pdf of 
lindley distribution and at 0= , it reduces to the pdf of gamma distribution 
with parameters )(2, .  

The graphs of density and distribution functions of QLD for different 
values of its parameters   and   are shown in Figure(2.1), (2.2). 

 

 
Figure 2.1: Pdf of the QLD for some parameter values ,   
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Figure 2.2: CDF of the QLD for some parameter values ,   

 

The quasi Lindley distribution has a survival and hazard rate function 
respectively given by: 

,
1)(

)(1=

)(1=)(

xex
xFxS




 


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
                        (2.3) 

 and  

.
)(1

))((=

)(1
)(=)(

x
x

xF
xfxh







 (2.4) 

 Figures 2.3 and 2.4 illustrate survival and hazard (failure) rate 
functions of QLD for selected values of the parameters. 
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Figure 2.3: The survival function of the QLD for some parameter values  ,   

 

 

 
Figure 2.4: The hazard rate function of the QLD for some parameter values ,   
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2.2  Stress-Strength Reliability for QLD 

 Assume ),( 11 QLDX :  and ),( 22 QLDY :  are independent random 

variables with pdf )(xf  and )(xg , respectively. Then the stress srength 

reliability can be obtained as:  
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2.3  Multi-component Stress-Strength Reliability for QLD 

Assuming that (.)F and (.)G  are quasi Lindley distributions with 

unknown parameters 2121 ,(,,  , and that independent random samples 

nXXX ,,, 21   and mYYY ,,, 21   are available from (.)F and (.)G

respectively. The reliability in multi-component stress-strength for quasi 
Lindley distribution using Eq.(2.2) is: 
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2.4  Maximum Likelihood Estimation for R  

 Suppose that nXXX ,,, 21  is random sample from ),( 11 QLD , and 

mYYY ,,, 21  is random sample from ,),( 22 QLD then the jointly-likelihood 

function of X and Y is given by: 
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 Then the log likelihood function can be written as:  

       1log1logloglog=);,( 2121   mnmnyx  
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(2.7)
 

 The MLE of ),,,(= 2211   can be obtained as a solution of the 

following equations:  
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Solving these equations numerically using an iterative process as 

Newton Raphson to get 2211 ˆ,ˆ,ˆ,ˆ  . It is well known that the method of 

maximum likelihood estimation has invariance property, then the MLE of R
and ksR ,  can be obtained as following:  
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2.5  Asymptotic Confidence Interval of R  

 The asymptotic variance-covariance matrix of all parameters can be 
approximated by the inverse of observed information matrix, and then derive 

the asymptotic distribution of R̂ . Based on the asymptotic distribution of R̂ , 
we obtain the asymptotic confidence interval of R . 

The Fisher information matrix of ),,,(= 2211   is given as:  
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where: 

 

 0,==0;== 41143113 IIII                        (2.15) 

 0,==0;== 42243223 IIII                        (2.16) 
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Using the central limit theorem,we obtain the following theorem :  

 

Theorem 2.1: As n , m ; then 

 )).((0,))ˆ(),ˆ(),ˆ(),ˆ(( 1
22221111   INmmnn

d
 

Where 
d
  means converge in distribution, and )(1 I  is the inverse of the 

Fisher information matrix `).(I  
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In order to establish the asymptotic normality of R , we first define: 
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where T is transpose operation, and 
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Hence; using Theorem 2.1, the asymptotic distribution of (R̂ the MLE 

of )R is defined as: 

 ),(0,)ˆ( BNRRmn
d
                        (2.28) 

where  

.)()()()ˆ(= 1  dIdRVarB T                         (2.29) 

Therefore, using Eq.(2.29), an asymptotic )%(1100   confidence 

interval for R  can be obtained as:  

,ˆ
2

BZR   

where 
2
Z  is the upper 

2
  precentile of the standard normal distribution.  

2.6  Bayesian Estimation of R  

 In this section, we provide the Bayes estimate of Rwhere 2121 ,,,   

are unknown parameters and all of these parameters having independent 
gamma prior distributions as following:  
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The joint posterior pdf is defined as: 
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2.6.1 Bayes estimators under Symmetric and Asymmetric loss functions: 

 The Bayes estimate of reliability R depending also on the loss function. 
We discussed before, in the previous chapter, three different loss function; 
squared error, linex, and general entropy loss functions. The squared error 
loss function is considered as symmetric loss function, where the linex , and 
the general entropy loss functions are asymmetric loss functions. In this 
section we proposed the bayesian estimation of R using these three loss 
functions such that :  

-The Bayes estimate of R under the Se, which is the posterior mean of 
R , is given by:  

 .)/,,,(=ˆ
212121210000
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           (2.32) 

-The Bayes estimate of R  under the Lx, is given by:  
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where c  is constant, 0>c , see Zellner (1986). 

-The Bayes estimate of R  under the Ge, is given by:  
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where q  is constant, 0>q , see Calabria and Pulcini (1994). 

These integrals are very complicated to computed analytically, so two 
different approaches can be used to approximate these integrals, namely, 
Metropolis-Hastings technique and Importance Sampling technique.  

 

2.6.2  Bayes estimate of R  using Metropolis-Hastings technique (MH) 

 As we mentioned before that MH was developed by Metropolis et 
al.(1953), and Hastings (1970). The joint posterior density function of 

121 ,,  , and 2  is given in Eq. (2.31). It is easily seen that the marginal 

density functions of 121 ,,  , and 2  are, respectively:  
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 Therefore, easily samples of 1  and 2  can be generated by using 

Gamma distribution as shown in Eqs. (2.35) and (2.36) respectively. 
However, the posterior distribution of 1 , 2  cannot be generated from a 

well known distributions. The MH algorithm, can be used to solve this 
problem, as shown in the following algorithm. 

    • Step1:   Start with initial value of 1 , 2  such that 1
(0)

1 ˆ=  , and 

.ˆ= 2
(0)

2   

    • Step2:   Set 1=i .  

    • Step3:  Generate )(
1

i  from )./( 11 data  

    • Step4:  Generate )(
2

i  from )./( 22 data  

    • Step5:   Generate )(
1

i  from ),/( 113 data  using the MH                                                          

algorithm with the proposal distribution 1q  as following:   

- Generate (*)
1  from the proposal distribution  

))(,(= 1)(
1

1)(
11

 ii VarNq  . 

       - Calculate the acceptance probability 

]
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),|([1,=),( )(
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13
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1
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13(*)

1
1)(

11 data
dataMinr ii

i
i


 

 . 

        -Generate U from )1,0(U .  

        - If ),( (*)
1

1)(
11   irU , accept the proposal distribution and set  

(*)
1

)(
1 =  i  , otherwise set 1)(

1
)(

1 = ii  . 

 • Step6:   Generate )(
2

i from ),/( 224 data  using the MH 

algorithm with the proposal distribution 2q  as following:   

        - Generate (*)
2  from the proposal distribution  
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))(,(= 1)(
2

1)(
22

 ii VarNq  . 

        - Calculate the acceptance probability 
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        - Generate U from )1,0(U . 

-   If ),( (*)
2

1)(
22   irU , accept the proposal distribution and set  

(*)
2

)(
2 =  i  , otherwise set 1)(

2
)(

2 = ii  . 

     • Step7:   Compute )( iR  at ),,,( )(
2

)(
1

)(
2

)(
1

iiii   using Eq.(2.5).  

    • Step8:   Set 1.= ii  

    • Step9:  Repeat steps from 8)(3  N  times.  

 Then; 

-An approximate Bayes estimate of R  under Seloss function is given as: 
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-An approximate Bayes estimate of R  under Lx loss function is given as: 

.1log1=ˆ )(

1=










 




icR
N

Mi
Lx e

MNc
MHR

                 (2.40)
 

-An approximate Bayes estimate of R  under Ge loss function is given as: 
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where M is the burn-in samples, N is the MCMC samples.  
 

2.6.3  Bayes estimate of R using Importance Sampling technique (IS) 

 Importance Sampling Technique has suggested by Chen and 
Shao(1999). In statistics, importance sampling is the name for the general 
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technique of determining the properties of a distribution by drawing samples 
from another distribution. The focus of importance sampling here is to 
determine as easily and accurately as possible the properties of the posterior 
from a representative sample from the second distribution.  

Using Importance Sampling Technique, Eq.(2.31) can be written as  
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where:  
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(2.47) 

As shown, all the above functions from )/( 11 datag   to )/( 24 datag   

follow gamma distributions with different parameters, so it is quite simple to 
generate QLD parameters from them. Assuming that 421 ,,, aaa   and  

421 ,,, bbb   are known, and assuming initial values for 2121 ,,,  . we can 

use the following Importance Sampling Algorithm:   

    • Step1:  Generate 11  from )./( 11 datag   

    • Step2:  Generate 21  from )./( 22 datag   
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    • Step3:  Generate 11  from )./( 13 datag   

    • Step4:  Generate 21  from )./( 24 datag   

• Step5:  Repeat steps from 1 to 4, N times to obtain 

).,,,(,),,,,( 212121112111 NNNN    

 Then 

-An approximate Bayes estimate of R under Se loss function can be 
obtained as  
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- An approximate Bayes estimate of R  under Lxloss function can be 
obtained as  
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-An approximate Bayes estimate of R  under Ge loss function can be 
obtained as:  
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where  

).,,,(= 2121 iiiii RR   as defined in Eq.(2.5), for Ni ,1,=  . 
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2.7  Numerical Study 

 In this section, we mainly present some simulation experiments to see 
the performance of the mentioned methods for different sample sizes, 

.(100,100)(70,70),(50,50),(30,30),(20,20),(10,10),=),( mn We simulated 

1000 complete samples from quasi Lindley distribution with the parameter 
values; ,0.8=2,=1.5,=0.2,= 2121   with true reliability value is 

0.87399 .  

We also compute the 95% confidence intervals of R based on the 
observed Fisher information matrix. We compared the performances of the 
MLE and the Bayes estimates in terms of mean squared errors (MSE’s). 
Also two different techniques of Bayesian estimation (IS, MH) are compared 
for different loss error functions. Bayesian estimation for different loss error 
functions was proposed with different values of qc,  such that; 

)Lx1(3=1 c , )Lx2(5=2c , 3=1 q  (Ge1), 5=2q  (Ge2). 

Bayesian estimation studied under the informative gamma priors. For 
choosing suitable hyper-parameters, the experimenters can incorporate their 
prior guess in terms of location and precision for the parameter of interest. 

The gamma distribution for the priors has bamean /= , and 2/= bavariance . 
We assume a small value of prior variance (0.01), and take the mean equal 
to the true value of the parameter of interest. For each parameter prior we 
solve the two equations of the mean and the variance, we obtain the 
following values of hyper-parameters : 

64=400,=225,=4,= 4321 aaaa ,   and 

80=200,=150,=20,= 4321 bbbb . 

We also computed the Bayes estimates based on 11000 samples and 
discard the first 1000 values as burn-in.The maximum likelihood estimator 
and asymptotic confidence intervals of R  for different ),( mn are obtained in 
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Table 2.1. Bayes estimates of R  using different techniques under different 
loss error functions are obtained in Table  2.2.  
 

Table 2.1:  Average estimate, (MSEs) for MLE, and average confidence length of the 

simulated 95% confidence intervals of R . (all MSE values are multiplied by )10 3
 

 
 

  
Sample size Average estimate 

(MSE) 
C.I.L C.I.U C.I.length 

(10,10) 0.8661 

(3.2129) 

0.734952 0.997237 0.262 

(20,20) 0.8782 

(1.1262) 

0.7872 0.9692 0.182 

(30,30) 0.8748 

(0.7609) 

0.7976 0.9521 0.155 

(50,50) 

 

0.8758 

(0.459333) 

0.8167 0.9371 0.120 

(70,70) 

 

0.8752 
(0.3349) 

0.8237 0.9266 0.103 

(100,100) 

 

0.8774 
(0.1554) 

0.8349 0.9199 0.084 
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Table 2.2: Average estimates (mean squared error ) of R  for different bayes estimators 

under different error loss functions. (all MSE values are multiplied by )10 3  

 Est. Importance Sampling MH Technique 

(n,m) Se Lx1 Lx2 Ge1 Ge2 Se Lx1 Lx2 Ge1 Ge2 

(10,10) 0.8671 

(0.7516) 

0.8686 

(0.7058) 

0.8646 

(0.8421)

0.8683 

(0.7134) 

0.8635 

(0.8934)

0.8879 

(0.7611)

0.8891 

(0.7748) 

0.8858 

(0.7459)

0.8888 

(0.77) 

0.8849 

(0.7477)

(20,20) 0.8706 

(0.4769) 

0.8715 

(0.4611) 

0.8692 

(0.5075)

0.8713 

(0.4637) 

0.8686 

(0.5239)

0.8919 

(0.6747)

0.8927 

(0.692) 

0.8908 

(0.6479)

0.8925 

(0.6872) 

0.8904 

(0.6403)

(30,30) 0.8707 

(0.3591) 

0.8714 

(0.3491) 

0.8697 

(0.3784)

0.8712 

(0.3508) 

0.8693 

(0.3883)

0.8916 

(0.5684)

0.8921 

(0.5822) 

0.8907 

(0.5464)

0.8919 

(0.5785) 

0.8904 

(0.5396)

(50,50) 0.8717 

(0.2536) 

0.8721 

(0.24863)

0.8711 

(0.2626)

0.8719 

(0.24957)

0.8708 

(0.2670)

0.8899 

(0.4366)

0.8903 

(0.4458) 

0.8894 

(0.4216)

0.8902 

(0.4434) 

0.8892 

(0.4167)

(70,70) 0.8734 

(0.2189 

0.8737 

(0.217) 

0.8729 

(0.2226)

0.8737 

(0.2173) 

0.8729 

(0.2244)

0.8887 

(0.3755)

0.8890 

(0.3823) 

0.8883 

(0.3645)

0.8888 

(0.3805) 

0.8881 

(0.3609)

(100,100)0.87525 

(0.1384) 

0.8754 

(0.1387) 

0.8749 

(0.138) 

0.8754 

(0.1386) 

0.8749 

(0.138) 

0.8859 

(0.2432)

0.8862 

(0.2477) 

0.8856 

(0.2359)

0.8861 

(0.2465) 

0.8854 

(0.2334)

 

2.8  Real Data Analysis 

 In this section we present the analysis of real data, introduced by Singh 
et al. (2014). The data represent the waiting times (in minutes) before 
customer service of two banks A and B, respectively. The use of Lindley 
distribution for the waiting times (bank A) data has been originally discussed 
by Lindley (1958). Since then, many authors have suggested the data under 
different set-up for Lindley distribution. We are interested in estimating the 
stress-strength parameter R = P(Y < X) where X and Y denotes the customer 
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service time in Bank A and B (Data set 1, 2) respectively. The data sets are 
presented below: 

Data set 1: X 100)=(n  

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2,3.3, 3.5, 3.6,4.0, 4.1, 
4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 
6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 
8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 
11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 
15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 
21.9, 23.0, 27.0, 31.6, 33.1, 38.5. 

Data set 2: Y 60)=(m  

0.1, 0.2, 0.3, 0.7, 0.9, 1.1, 1.2, 1.8, 1.9, 2.0, 2.2, 2.3, 2.3, 2.3, 2.5, 2.6, 2.7, 
2.7, 2.9, 3.1, 3.1, 3.2, 3.4, 3.4, 3.5, 3.9, 4.0, 4.2, 4.5, 4.7, 5.3, 5.6, 5.6, 6.2, 
6.3, 6.6, 6.8, 7.3, 7.5, 7.7, 7.7, 8.0, 8.0, 8.5, 8.5, 8.7, 9.5, 10.7, 10.9, 11.0, 
12.1, 12.3, 12.8, 12.9, 13.2, 13.7, 14.5, 16.0, 16.5, 28.0.  

First,we checked the suitability of the considered real data setsto the QLD.Therefore we have provided the Kolmogorov
distribution. The fitting summary has been presented in Table 2.3, which 
indicates that the QLD fits well to data Set 1 and data Set 2. 

Table 2.3: P-value of different goodness-of-fit tests for data set 1, 2. 

 

Test K-S A-D C-V 

data set 1. 0.0654  0.0217  0.0501 

data set 2. 0.9287  0.965  0.9310  

Based on the MLEs 2211 ˆ,ˆ,ˆ,ˆ   the point estimate of R  is 0.59 and 

the 95%  confidence interval of R  is (0.25, 0.93). For real data sets, the 
maximum likelihood and Bayes estimates of the stress-strength parameters 
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and reliability are summarized in Table 2.4.  

 

Table  2.4:  The MLEs and Bayes estimates of stress-strength parameters and reliability 

R  from real data sets 

Est. 1  1  1  2  R  

MLE 0.1 0.27 84.09 0.41 0.59 

ISBayes  0.13 0.59 1.44 0.66 0.81 

MHBayes  0.1 0.54 22.13 0.69 0.77 

 

2.9  Conclusions 

In this chapter, maximum likelihood and Bayesian estimation methods 
for stress-strength reliability R were discussed, when X and Y both follow a 
QLD with different parameters. We obtained the 95%  confidence intervals 
of R based on the observed Fisher information matrix. We proposed the 
Bayesian estimation based on independent gamma priors under different 
error loss functions(Se, Lx, and Ge). we suggested the IS and MH 
techniques to generate samples from the posterior distributions and then 
compute the Bayes estimates. Simulation study has been introduced to 
investigate the performance and compare among all mentioned methods. 

Therefore, from the results presented earlier  in Tables 2.1 and 2.2 , we 
observed that:   

    • The performance of the Bayes estimators is better than maximum 
likelihood for all different sample sizes.  

    • Mean squared error(MSE’s) for all estimation methods decrease as 
sample size increase.  

    • As sample size increased, the asymptotic confidence intervals for R are 
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improving, and thier length decreased. That means the estimated reliability 
becomes in the most accurate interval.  

    • Maximum likelihood results are improving and become closer to 
Bayesian results as sample size increased.  

    • For Bayes estimators, IS technique gives less MSE’s values, so it is 
better than MH technique for the same priors values, and the same number 
of generated samples.  

    • Ge, and Lx loss functions gave less MSE’s at specified values of qc, . 

As shown above Lx2,Ge2 acheived the best results for MH, but for IS 
technique Lx1,Ge1 are the best estimators .  

A real data analysis has been performed for illustrative purposes. 
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CHAPTER 3 

Estimation of Stress-Strength Reliability for Exponentiated 
Generalized Inverse Weibull Distribution 

 

3.1  Introduction 

 One of the most widely used lifetime distributions in reliability 
analysis is the Inverse Weibull distribution (IW). It can be used to determine 
the maintenance periods of reliability centered maintenance activities. It can 
also be used to model a variety of failure characteristics such as infant 
mortality, useful life and wear- out periods and applications in medicine, 
reliability and ecology. Keller et al.(1982) discussed the use of the IW 
distribution as a suitable model to describe the degeneration phenomena of 
mechanical components such as the dynamic components (pistons, 
crankshaft, etc.) of diesel engines. Nelson (1982) provided a good fit to 
several data such as the times to breakdown of an insulating fluid using the 
IW distribution, subject to the action of constant tension. Calabria and 
Pulcini (1994) suggested the IW distribution for Bayes 2-sample prediction. 

The IW distribution has a cumulative distribution function (CDF):  

 0,>,0,>,=)(
)(




xexV x


 (3.1) 

 and a probability density function (pdf):  

 .=)(
)(1


 xexxv
  (3.2) 

 Researchers always seeking for developing new and more flexible 
distributions. As a result, many new distributions of (IW) have been developed 
and studied. Cordeiro et al. (2013) proposed a new class of distributions that 
extend the exponentiated type distributions and they obtained some of its 
structural properties. Given a continuous CDF V(x) , they defined the 
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Exponentiated Generalized (EG) class of distributions by:  

 ,]))((1[1=)( xVxF   (3.3) 

 where 0>  and 0>  are two additional shape parameters. The 

probability density function (pdf) of this new class has the form:  

 ,]))((1[1)]()[1(=)( 11    xVxVxvxf  (3.4) 

 This class of distributions extends a various exponentiated type 
distributions. The EG family of densities (3.4) allows for greater exibility of 
its tails and can be widely applied in many areas of engineering and biology. 
Note that even if v(x) is a symmetric distribution, the distribution f(x) will 
not be a symmetric distribution. The two extra parameters  ,  can control 

the new distribution properties. 

This chapter discussed the stress-strength reliability model 
)<(= XYPrR  when X and Y have an Exponentiated Generalized Inverse 

Weibull (EGIW) distribution with different parameters. The problem of 
stress-strength reliability is studied to obtain the reliability function of the 
parameters of EGIW distribution. Reliability for multi-component stress-
strength model for EGIW distribution is also studied. Maximum likelihood 
estimation for stress-strength reliability of underlying distribution is 
performed. Bayesian estimator of R is obtained using importance sampling 
technique. A simulation study to investigate and compare the performance of 
each method of estimation is performed. Finally analysis of a real data set 
has also been presented for illustrative purposes. 
 

3.2  The Exponentiated Generalized Inverse Weibull Distribution 
(EGIW) 

 The Exponentiated Generalized Inverse Weibull Distribution (EGIW) 
was introduced by Elbatal and Muhammed(2014) as extension of 
exponentiated generalized family. They had provided a comprehensive study 
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for this distribution, they derive the moment generating function and the thr  
moment thus generalizing some results in the literature. Also , Expressions 
for the density, moment generating function and thr  moment of the order 
statistics are obtained in their paper.  

The EGIW distribution has a pdf f(x) and CDF F(x):  

 ,])(1[1][1=)( 1)(1)()(1   





 xxx eeexxf  (3.5) 

 

 ,])(1[1=)(
)( 


xexF


  (3.6) 

 where  

 0.>,,,0,> x  

Figures 3.1 and 3.2 illustrate pdf and CDF of (EGIW ) distribution for 
selected values of the parameters. 

 

 
Figure  3.1: Pdf of the EGIW distribution for some parameter values ,,,   and   
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Figure  3.2: CDF of the EGIW distribution for some parameter values ,,,   and   

 

The survival and hazard (failure) rate functions of the (EGIW) 
distribution are given respectively by:  

 ,])(1[11=)(
)( 


xexS


  (3.7) 

 and  

 












])(1[11

])(1[1][1=
)(1

)(=)(
)(

1)(1)()(1

x

xxx

e

eeex
xF

xfxh









 (3.8) 

 Figures 3.3 and 3.4 illustrate survival and hazard (failure) rate functions of 
EGIW distribution for selected values of the parameters. 
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Figure  3.3: The survival function of the EGIW distribution for some parameter values 

,,,   and   

 

 
Figure  3.4: The hazard rate function of the EGIW distribution for some parameter values 

,,,   and   
 

The EGIW distribution is very flexible model that approaches to 
different distributions when its parameters are changed. Its flexibility is 
explained in the following, if X is a random variable with pdf in Eq.(3.5), 
then we have the following special cases: 
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 If 1==  , then Eq.(3.5) reduces to the inverse weibull distribution. 

 If 1= , then we get the exponentiated (generalized) inverse weibull 
distribution. 

 If 1= , then we get the exponentiated generalized inverse exponential 
distribution. 

 If 1===  , then we get the inverse exponential distribution.  

 

3.3Expansions for The ProbabilityDensity and Cumulative Distribution  
Functions 

 In this section, we present a new representations for the pdf and the 
CDF of (EGIW). Equations (3.5) and (3.6) are straightforward to compute 
using any software with algebraic facilities, but the integration for get the 
reliability will be very difficult using these formula. So the mathematical 
relation given below will be useful in next sections. 

If b  is a positive real non integer and 1|| z , we have the power series 

expansion  

 ,
1

1)(=][1
0=

1 jj

j

b z
j
b

z 






 
 


  

where  

 .
)(!

)(=
1

jbj
b

j
b











 
 

Applying this in Eqs.(3.5) and (3.6), and using fractional binomial 
theorem (See Chan et al. (2006)), we have:  

11 ]))((1[1)]()[1(=)(    xGxGxgxf  

1

10=1

1 )]([1
1

1)()]()[1(= 1 jj

j
xG

j
xGxg  
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





 
 


  
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3.4  Stress-Strength Reliability Form 

 Suppose we have two independent random variables X (represents the 
strength of some component) and Y (represents the stress applied to the 
component), with pdf )(xf and ),(yw respectively. Let ),,,( 11 EGIWX :  

and .),,,( 22 EGIWY :  

Then, the stress-strength reliability function is given by:  

)<(= XYPrR  
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00
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x
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                        (3.11) 

 Using Eqs.(3.9) and (3.10) we have the following:  
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 Note that when the exponents in Eqs. (3.5) and (3.6) are integers, the 
expansions in Eqs.(3.9), (3.10) and (3.12) become finite and this is a special 
case from fractional binomial theorem.  

 

3.5  Reliability for Multi-Component Stress-Strength Model 

 The reliability for a multi-component stress-strength model has 
developed by Bhattacharya and Johnson (1974). Let the random samples Y,

kXXX ,,, 21  being independent, )(yG be the continuous distribution function 

ofY and )(xF be the common continuous distribution function of

.,,, 21 kXXX   Suppose that a system, with k identical components functions 
if ,s )(1 ks  , or more of the components simultaneously operate.  

In this operating environment, the system is subjected to a stress Y  
which is a random variable with distribution function (.).G The strengths of 
the components, that is the minimum stress to cause failure, are independent 
and identically distributed random variables with distribution function .(.)F
The system reliability, which is the probability that the system does not fail, 
is the function ksR ,  given by:  
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From Eqs. (3.5) and (3.6), The reliability for multi-component stress-
strength of EGIW distribution is:  
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   (3.15)  

 

3.6  Maximum Likelihood Estimation for R  

 In this section, the maximum likelihood estimator (MLE) of R is 
derived. Suppose nXXX ,,, 21   is random sample from ),,,( 11 EGIW

, and mYYY ,,, 21   is random sample from ),,,( 22 EGIW . Now, to get 
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the MLE of R  we first get the maximum likelihood estimates for the 
parameters of X  and Y; ),,,,,(= 2121  . Since X , Y are 

independent random variables, then the jointly-likelihood function of X and 
Y is:  
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(3.16)
 

 The logarithm of the joint likelihood function may be written as:  
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The MLE can be obtained by differentiating Eq. (3.17)with respect to 
 ,,,,, 2211 , and solving the following equations: 
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                                                                    (3.23) 

Obtaining a closed form expressions for the MLEs of the unknown 
parameters  ,,,,, 2121  are not possible, so these nonlinear equations 
are solved numerically using iterative process as Newton Raphson to get 

.ˆ,ˆ,ˆ,ˆ,ˆ,ˆ 2121   

Then the MLE of R can be obtained using the invariance property of the 
maximum likelihood estimator from Eq.(3.12) as following:  
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 (3.24) 

Similarly, We can calculate the MLE of reliability for multi-component 
stress-strength model from Eq(3.15)by:  
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3.7  Bayesian Estimation of R  

 In this section we provide the Bayes estimate of R where 
),,,,,(= 2121   are unknown parameters and all of these parameters 

having independent gamma prior distribution as following:  
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The joint posterior pdf is defined as  
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Where ),,,,,/,( 2211 yxL  is defined in Eq.(3.16), then the joint 

posterior function can be written as :  
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(3.26) 

 

 Therefore, the Bayes estimate of reliability, say BR̂  under the squared 

error loss function isgiven by: 
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 (3.27) 

 It is impossible to compute the bayes estimate of R analytically using 
Eq.(3.27), therefore instead, we propose to approximate it by a Monto Carlo 
method to obtain this integration. Importance sampling technique was used 
for solving this problem.  

 

3.7.1  Bayes estimate of R using Importance Sampling technique 

 It is so difficult to generate samples directly from the posterior 
function in Eq.(3.26), so we divided it to individuals function which easy to 
generate sample from them.  
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So we can rewrite Eq.(3.26)as following:  
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 It is clear that 
),,,/(),,,/(),,/(),/( 241321 datagdatagdatagdatag   

)/(and),/( 2615 datagdatag  follow a gamma distribution, so it is quite 

simple to generate samples from them. The following algorithm will be used 
assuming that 61 ,, aa   and  61 ,, bb   are known apriori, and assuming 

initial values for 2121 ,,,,,  . 

Importance Sampling Algorithm:   

    • Step1:  Generate 1  from ).(./1 datag  

    • Step2:  Generate 1  from ).,(./2 datag   

    • Step3:  Generate ),,,/(.from 311 datag  ).,,/(.from 421 datag    

    • Step4:  Generate ),/(.from 511 datag )./(.from 621 datag   

    • Step5:  Repeat this procedure N times to obtain  

).,,,,,(,),,,,,,( 21212111211111 NNNNNN    

    • Step6:  An approximate Bayes estimate of R under a squared error loss 
function can be obtained as  

 ,
)/,,,,,(1

)/,,,,,(1

=ˆ

2121
1=

2121
1=

datah
N

datahR
NR

iiiiii

N

i

iiiiiii

N

i
B








 

where  

 ),,,,,,(= 2121 iiiiiii RR   

as defined in Eq. (3.12) for Ni ,1,=   .  

 Using the same technique, We can obtained the bayesian estimation of 
reliability for multi-component stress-strength model by replacing R  by ksR ,  

given in Eq. (3.15).  
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3.8 Numerical Study 

 In this section, we mainly present some simulation experiments to see 
the behavior of the proposed methods for various sample sizes and for 
parameter values 0.61=1.008,=2.2,=3.5,=1.5,=0.75,= 2121  , 

so that the true reliability value is 0.847751. We compared the performances 
of the MLEs and the Bayes estimates with respect to the squared error loss 
function in terms of biases and mean squares errors (MSEs).  

We have taken sample sizes namely ),( mn = (5, 5), (10, 10), (20, 20), 

(30, 30). 

 

For bayesian estimation, we used importance sampling technique under 
the informative gamma priors. For choosing a suitable hyper-parameters, the 
experimenters can incorporate their prior guess in terms of location and 
precision for the parameter of interest. The gamma distribution has 

ba/=mean , and 2/=varience ba . We assume a small value of prior varience 
(0.005), and taken the mean equal to the parameter of interest. For each 
parameter priors we solve the two equations of the mean and the varience, 
we obtain the following values of hyper-parameters : 

956.5.=2500,=500,=107.14,=76.25,=201.6,= 654321 aaaaaa  

and 434.783=714.286,=333.333,=142.857,=125,=200,= 654321 bbbbbb  

For the all mentioned sample sizes, we obtained the average estimate, 
bias and the mean squared errors of the MLE and Bayesian estimation of the 
stress-strength reliability R which given in Table (3.1). 
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Table 3.1: Average estimate, Bias and MSE of R using different estimators.  

 

3.9 Real Data Analysis 

 In this section, we present a data analysis of the strength data 
introduced by Badar and Priest (1982). The data stand for the strength data 
measured in GPA, for single carbon fibers and impregnated 1000-carbon 
fiber tows. Single fibers were tested under tension at gauge lengths of 1, 10, 
20 and 50 mm. Impregnated tows of 1000 fibers were tested at gauge lengths 
of 20, 50, 150 and 300 mm. For illustrative purpose, we consider the data 
sets consisting the single fibers of 20 mm (Data Set 1) and 10 mm in gauge 
lengths (Data Set 2), with sample sizes 69 and 63 respectively. Data sets are 
provided below: 

Data set 1:(strength measurements) 

.312, .314, .479, .552, .7, .803, .861, .865, .944, .958, .966, .997, 1.006, 
1.021, 1.055, 1.063, 1.098, 1.14, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 
1.274, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 
1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 
1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821, 1.848, 1.880, 1.954, 
2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585.  

Estimators MLE Bayesian 

),( mn  R̂  Bias MSE 
BR̂  Bias MSE 

(5,5) 0.90616 0.05841 0.01502 0.88337 0.0316 0.00425 

(10,10) 0.89713 0.04938 0.01116 0.87597 0.02822 0.00124 

(20,20) 0.89001 0.04226 0.00612 0.86825 0.0205 0.00096 

(30,30) 0.87338 0.02563 0.00379 0.86002 0.01227 0.0007 
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Data set 2:(stress measurements) 

.101, .332, .403, .428, .457, .550, .561, .596, .597, .645, .654, .674, .718, 

.722, .725, .732, .775, .814, .816, .818 ,.824, .859, .875, .938, .940, 1.056, 
1.117, 1.128, 1.137, 1.137, 1.177, 1.196, 1.230, 1.325, 1.339, 1.345, 1.420, 
1.423, 1.435, 1.443, 1.464, 1.472, 1.494, 1.532, 1.546, 1.577, 1.608, 1.635, 
1.693, 1.701, 1.737, 1.754, 1.762, 1.828, 2.052, 2.071, 2.086, 2.171, 2.224, 
2.227, 2.425, 2.595, 3.2.  

We fit the two data sets separately with the exponentiated generalized 
inverse weibull distribution (EGIW). we provide the Kolmogorov-Smirnov 
(K-S), Anderson-Darling(A-D) and Cramér-von Mises (C-V) goodness-of-
fit tests in Table(3.2). Obviously, the (EGIW) model fits well to Data Set 1 
and Data Set 2. 

The MLE and Bayesian estimates of R for the real data are provided in 
Table (3.3).  

Table 3.2: P-value of different goodness-of-fit tests for data set 1, 2.   

 K-S A-D C-V 

data set 1. 0.231248 0.143961 0.152425 

data set 2. 0.192997 0.126852 0.213019 

 

Table 3.3: Maximum likelihood,Bayesian estimates of the parameters and R . 

 1  2  1  2      R  

MLE 2.7192 1.9639 4.4707 2.0057 0.9511 1.0789 0.55826 

Bayes 1.1070 1.5513 3.6196 2.1963 1.5344 1.06724 0.7493 
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  In case of multi-component stress-strength model, the maximum 
likelihood and Bayes estimates of the stress-strength reliability based on the 
real data sets, are presented in Table (3.4) for different values of (s, k).  

 

Table 3.4: The Maximum likelihood and Bayesian estimates of ksR , . 

ksR ,  MLE Bayes 

(1,3) 0.73573 0.82293 

(1,5) 0.83869 0.91084 

(2,4) 0.54955 0.70667 

(3,3) 0.16096 0.34609 

(3,5) 0.42262 0.6608 

 

3.10  Conclusions 

 In this chapter we presented two methods for estimating 
)<(= XYPrR  when X  and Y  both follow exponentiated generalized 

inverse weibull distribution with different parameters. We investigated 
Maximum likelihood and Bayesian estimation methods of R and their 
performances are examined by simulation study. 

We have computed the Bayes estimate of R based on the independent 
gamma priors and using squared error loss function. Since the Bayes 
estimate cannot be obtained in explicit form, we have used the importance 
sampling technique to compute the Bayes estimate.  

From the simulation results given earlier in Table 3.1, we observed that:   

    • For all the methods, as the sample size increases the biases and the mean 
squared errors decrease.  

    • The performance of the Bayes estimators is better than maximum 
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likelihood for all different sample sizes.  

    • Maximum likelihood results are improving and become closer to 
Bayesian results as sample size increased.  

 Real data analysis has been performed for illustrative purposes. We 
introduced the MLE, and Bayesian estimation of multi-component stress-
strength reliability using the real data study. From the results given in Table 
3.4, we notice that, for fixed k , as s increases then the value of ksR ,

decreases, also for fixed s , as k increases then the value of ksR ,  increases.  
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FUTURE WORK 

 

 Study the stress-strength reliability estimation for another 
distributions. 

 Study the stress-strength reliability estimation when the stress follow 
a distribution and the strength follow another distribution. 

 Using another methods of estimation(Moment method, Bootstrap 
confidence interval) and another types of loss functions, and 
approximation method(Lindely Approximation) for Bayesian method. 

 Study the stress-strength reliability estimation based on censored 
samples.  
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 الملخص العربي
التي تقیس صلاحیة منتج أو أي یعد نموذج صلاحیة القوة والاجهاد من اهم النماذج 

 . ةوالصناعی ةنظام مكون من عدة وحدات في كثیر من التطبیقات الهندسیه والطبی
والإجهاد الواقع علیه Xرمز له نظام أو وحدة بمفردها یتحمل أي فإذا فرضنا أن قوة 

یظل یعمل ویؤدي وظیفته، مادام أن قوة تحمله)أو الوحده(ا النظامذ، فأن هYیرمز له 
Xأكبر من الإجهاد المؤثر علیهY، وهذة هي الفكرة الاساسیه التي یعتمد علیها نموذج

توصف ریاضیا  Rلذلك فإن دالة صلاحیة القوة و الإجهاد.صلاحیة القوة و الاجهاد
)X ")Prاقل من  Yبأنها دالة احتمال ان  XYR ."  

الهدف الرئیسي من هذه الرساله هو دراسة الإستدلال الإحصائیلمعالم صلاحیة 
حیث نعتبر . القوة والإجهاد لتوزیعات إحصائیه مختلفة وذلكبإستخدام طرق تقدیر مختلفه

یتبعان نفس التوزیع الإحصائي مع اختلاف معالم كل القوة والإجهاد كمتغیرین عشوائیین 
قمنابحساب معالم صلاحیة القوة والاجهاد باستخدام طریقة الإمكان الإعظم لقد .منهما

في طریقة بایز استخدمنا . وطریقةبایز، كما تم إیجاد فترات الثقه التقریبیه للصلاحیه
توضیحي استخدمنا أسلوب وكمثال ). ةوغیر متماثل ةمتماثل(للخسارة  ةدوال مختلف

.  (MSE)المحاكاة للمقارنه بین طرق التقدیر المستخدمه من حیث متوسط مربع الخطأ
 .لها ةالصلاحی ةبیانات حقیقیه وتقدیر قیم استخدامكما تم 

 :موجزعن كل بابعرضبواب فیما یلي أثلاثة  ىعل ةالرسال هتحتوي هذ
  :                الباب الأول

مقدمه یتم فیها عرض بعض التعریفات والمفاهیم الأساسیه وهو عبارة عن 
وصلاحیة  ةیناقش هذا الباب بشكل عام موضوعات الصلاحی. المستخدمه في الرساله

كما یعرض أیضا . القوة والإجهاد وأیضا نموذج القوة والإجهاد للأنظمه متعددة الوحدات
ومعالم صلاحیة القوة  ةبعض الطرق المستخدمةلتقدیر معالم التوزیعات الإحصائی

لإیجاد طریقة ) Markov Chain Monte Carlo(و یناقش أیضابعض طرق. والإجهاد
كذلك تم الإشارة الي بعض التوزیعات الإحصائیه التي تم .مناسبه فیحسابات تقدیر بایز
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  . إستخدامها في الرساله، بالإضافه الي عرض تاریخي لموضوع الرساله
  

  :الباب الثاني
باب تم إیجاد تقدیر معالم صلاحیة القوة والإجهاد عندما یتبع دالتي القوة ا الذفي ه

حیث تم إستخدام . مع اختلاف معالم كل منهما) (Quasi Lindleyوالإجهاد  توزیع
دوال خسارة متماثله وأخري غیر متماثله  ىعل اعتماداطریقة الإمكان الأعظم وطریقةبایز 

ثم استعرضنا . لك تم حساب فترة الثقه التقریبیه للصلاحیهذك. لإیجاد معالم الصلاحیة
من حیث متوسط نتائج المحاكاة كمثال توضیحي للمقارنه بین طرق التقدیر المستخدمة 

، كما تم تقدیر صلاحیة القوة والإجهاد لبیانات حقیقیه (MSE)مربع الخطأ
  :الدولیةنشرها في المجلة الباب تم  ذاكر أن نتائج هذالجدیر بال.مقترحة

"The Journal of Advances in Systems Science and Applications (ASSA), 
2018, 4, 39-51"  

  :الباب الثالث
تقدیر معالم صلاحیة القوة والإجهاد عندما یتبع دالتي القوة  ذا الباب كیفیةیناقش ه

مع ) Exponentiated Generalized Inverse Weibull( والاجهاد توزیع 
حیث تم إستخدام طریقة الإمكان الأعظم وطریقة بایز لإیجاد . معالم كل منهما إختلاف

ثم استعرضنا . لك للنظام متعدد الوحداتذات الوحدة الواحدة  وكذللنظام معالم الصلاحیة
من حیث متوسط مربع بین طرق التقدیر المستخدمة  ةنتائج المحاكاة للمقارن

ة ذقیقیه وتقدیر صلاحیة القوة والإجهاد لهلك تم إقتراح  بیانات حذ،ك(MSE)الخطأ
  :الباب تم نشرها في المجله الدولیه ذاكر أن نتائج هذالجدیر بال. البیانات

 
"Journal of Statistics Applications and Probability, 2018, 7, 1-10" 
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 شكر وتقدیر
 

بدایة أشكر االله من فضل وتكرم، وأعطي وأنعم، ووفق ویسر،خالقي ورازقي وولي نعمتي      
ربي ورب كل شيء، فالحمد الله الذ ي تتم بنعمته الصالحات، لقد وفقني االله سبحانه وتعالي بفضله 

  .التمام ىومنه وكرمه في إنجاز هذة الرساله، فالحمد الله ع الدوام وله الشكر عله وجود
معلم " صلي االله علیه وسلم" لاة والسلام علي سید الأنام، وحبیب الرحمن سیدنا محمد والص

طلب العلم فصلاةً وسلاماً علیه ننال بهما في الدنیا عزة وكرامه، وفي الاخرة  ىالذي حثنا عل ةالبشری
  .صحبه وشفاعه

  :لا یسعني إلا أن أتقدم بعمیق الشكر، والإمتنان لهیئة الإشراف وهم
أستاذ الإحصاء الریاضي بجامعة الأزهر  -مصطفي محمد محي الدین / اذ الدكتورالأست

رشاده المستمر وصبره وعطائه  الذي أحاطني بالاهتمام من خلال اقتراحه لموضوعات البحث وإ
اللامحدود، فلقد كان دائما محفزا لي لإنجاز هذا البحث وتعلمت منه النقد البناء، وأعطاني الكثیر 

  .مین والكثیر من التوجیهات القیمهمن وقته الث
جامعة  - كلیة الهندسة ببنهاب مساعد الإحصاء الریاضيأستاذ  - صدیقه أحمد عبداالله/ الدكتورة

  .رسالهال هبنها، لتشجیعها ومشاركتها في هذ
أستاذ مساعد الإحصاء الریاضي بجامعة الازهر لما  - عمرو فؤاد احمد صادق/ الدكتور 

، وقد بذل أقصي ما لدیه من جهد ووقت ةالرسال هقدمه من دعم متواصل وتوجیهات أثناء إعداد هذ
كما أدین له بالكثیر من الفضل في  تعلم البرامج التي . لنجاح هذا العمل من خلال المراجعة القیمه

  .استخدمتها أثناء اعداد الرساله
وأتقدم أیضا بجزیل الشكر لأساتذتي ورفقاء البحث العلمي بمدرسة الإحصاء الریاضي برئاسة 

/ الدكتورتشجیعهم واقتراحاتهم، وأخص بالذكر  ى، علمصطفي محمد محي الدین/ الأستاذ الدكتور
عین شمس علي بتربیةعبدالرحیم محمد عبدالرحیم /الدكتوربجامعة الفیوم، ومجدي ناجي أحمد 

  . ةهم في إنجاز نتائج وحسابات هذا البحث فلم یبخلوا عني بأي معلوممساعدت
، وأخوتي وأخواتي )مالك وحمزة(كما أعجز أن أقدم تقدیرا مناسبا لأبي وأمي وزوجي وأولادي 

شكرا جزیلا لكل . لتشجیعهم ودعمهم المستمر لإنجاز هذه الرساله، فلولا مساندتهم ما كان هذا العمل
  .ما قدمتموه لي 

الذین مدوا ید العون وشبرا  الهندسة ببنها تيوأخیرا أتقدم بالشكر لأساتذتي وزملائي بكلی
  .لمساعدتي أثناء إعداد هذه الرساله



 

90 
 

 
 

 إهداء
 
 
 
 

رفیق دربي في  في محنتي وتحمل مشقتي، إلي آزراني منإلى 
  .زوجي العزیز ه،إلىة الحیاذه

إلى مدرستي الاولي في الحیاة،  إلىمن علمني الصبر والنجاح،  إلى
  .قلبي أطال االله في عمره علىوالدي الغالي 

  .والدتي الغالیة التي لم تألُ جهداً فـي تربیتي ومساعدتیلأقـدم هذا العملإلى 

  ).مالك وحمزة(أبنائي الأعزاء إلى ات كبدي،ذإلى فل

لىأخوتي وأخواتي  إلى   .........أسرتي جمیعا وإ

  .أهدي إلیكم هذا العمل المتواضعبكل الحب والتقدیر والامتنان،                

  .ان تكلل بالنجاح والقبول -عز وجل-داعیةً المولي 
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 جامعة بنها
 كلیة الهندسة بشبرا

 قسم الریاضیات والفیزیقا الهندسیة
 

ةالإجهاد لبعض التوزیعات الإحصائیو  صلاحیة القوة  
 

الفیزیقا الهندسیة و كجزء من متطلبات الحصول على درجة الماجستیر في الریاضیاترسالة مقدمة 
)الریاضیات الهندسیة(  

 
 مقدمة من 

شیماء حامد عبداالله المغاوري محمد / ةالمهندس  
 

  تحت اشراف  

مصطفي محمد محي الدین. د. أ  
  أستاذ الإحصاء الریاضي 
جامعة الأزهر - كلیة العلوم    

عبداالله صدیقة أحمد. د  فؤاد صادقعمرو . د  
 أستاذمساعد الإحصاء الریاضي  أستاذ مساعد الإحصاء الریاضي

رجامعة الأزه -كلیة العلوم جامعة بنها -ا كلیة الهندسة بشبر     
  جمهوریة مصر العربیة –القاهرة 

2018 
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