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Summary

Stress-strength model is one of the most important models that
measures the reliability of the product in many practicing engineers. The
problem of the stress-strength model is originated in the context of reliability
of a component has strength X subject to a stress Y, the component failing if

and only if at any time the applied stress is greater than its strength. In this
case the stress-strength reliability function is noted by R = P(Y < X).

In this thesis, we study the statistical inference for the stress-strength
parameters R = P(Y < X),for two different statistical distributions from

complete samples. The estimation of R for Quasi Lindley and
Exponentiated Generalized Inverse Weibull distributions is proposed. Two
methods of estimation are suggested; Maximum Likelithood estimation
(MLE), and Bayesin estimation methods. Also, the asymptotic confidence
interval for Rbased on the MLE is obtained. Bayesian estimator of R is
obtained using two methods of Markov Chain Monte Carlo (MCMC)
technique; (Importance Sampling, Metroplis Hastings), under different loss
functions. Simulation is used for the purpose of illustration and comparing
the different estimators according to the bias and the mean square error
(MSE), also some real data examples are presented.

The thesis consists of three chapters:

Chapter 1: this chapter represents an overview of the research work
undertaken in this thesis. A simple definitions and concepts for reliability,
stress-strength model, multi-component stress-strength reliability are
introduced . Some methods of the parameter estimation are presented. We
mention the Monte Carlo techniques, which will be used in the next chapters
for developing Monte Carlo approximations for Bayesian estimation. We
also provide some important distributions that used in work. At the end of
this chapter a literature of the previous studies is presented.

Chapter 2: in this chapter, we discuss the estimation of the stress-
strength reliability using the maximum likelithood and Bayesian estimation
methods, when X and Y both follow a Quasi Lindley distribution (QLD)
with different parameters. Multi-component stress-strength reliability



function is also derived. Stress-strength reliability is studied using the
maximum likelihood, and Bayes estimations. We obtained the 95%
asymptotic confidence intervals of R. Bayesian estimations were proposed
using two different methods: Importance Sampling technique and
Metropolis-Hastings algorithm, under symmetric loss function (squared
error) and asymmetric loss functions (linex, general entropy). The behaviors
of the maximum likelihood and Bayes estimators of stress-strength
reliability have been studied through the Monte Carlo simulation study.
Finally analysis of a real data set has also been presented.

The results of this chapter were published at:
"Journal of Advances in Systems Science and Applications (ASSA),
2018, 4, 39-51."

Chapter 3: this chapter presents the stress-strength reliability when X
and Yhave an Exponentiated Generalized Inverse Weibull distribution
(EGIW) with different parameters. The problem of stress-strength reliability
is studied to obtain the reliability function of the parameters of EGIW
distribution. Reliability for multi-component stress-strength model for
EGIW distribution is also studied. Maximum likelihood estimation for
stress-strength reliability is performed. Bayesian estimator of R is obtained
using Importance Sampling technique under the squared error loss function.
A simulation study to investigate and compare the performance of each
method of estimation is performed. Finally analysis of a real data set has
also been presented for illustrative purposes.

The results of this chapter were published at:
"Journal of Statistics Applications and Probability, 2018, 7, 1-10."

The lists of references arranged alphabetically, and publications out of
this research study are provided towards the end of the thesis.
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CHAPTER 1

INTRODUCTION

This chapter represents a brief review about some definitions and
concepts of reliability,stress-strength reliability, multi-component stress-
strength reliability. Also, we will reviewsome methods of estimation that
will be used in our thesis. In addition, we propose some Monte Carlo
techniques for developing Monte Carlo approximations which willl be used

in Bayesian computations.

1.1Reliability Concepts and Principles
Meeker and Escobar (1998) have defined the reliability as; the

probability that a component, part, equipment, or system will satisfactorily
perform its intended function under given -circumstances, such as
(environmental conditions, limitations as to operating time, frequency and

thoroughness of maintenance), for a specified period of time.

According to this definition, the basic elements of reliability are
probability, adequate performance, duration of adequate performance and
operating conditions. The above definition covers all four aspects of product,
unlike quality, which speaks only according to specifications. In other words
reliability 1s quality over time, which is under the influence of time and
environment. Unlike quality, which is a degree of confirmation alone not

considering the time length and environment of operation.

Another important difference between quality and reliability is that one
can manufacture reliable systems using less reliable components. This by
altering product configuration, whereas it is not possible to manufacture high

quality systems with less quality components. Adding one or more similar



components in parallel can increase the reliability of the system.

Any system will be absolutely reliable of some undesirable events,
called failures, do not occur in the system’s operation. A failure is the partial
or total loss or change in the properties of a device in such a way that its
functioning is seriously affected or totally stopped. Every system has its own
set of such undesirable events. For example, a failure of a watch may be

defined as a delay exceeding 5 sec over a 24-h period.

For a mechanical system, a failure is a breakdown (a crack) of some of
its parts or an increase in vibration above the permitted level, etc. One of the
most dangerous failures of a nuclear reactor is a leak of a radioactive
material. For a missile, the failure could mean missing the target or

exploding before hitting it.

1.1.1Reliability function(Survival function)

We first examine reliability as a function of time, and this leads to the
definition of hazard rate, which is a very important concept in reliability
work. Examining the time dependence of hazard rates allows us to gain
insight into the study of failures. This characteristic is very useful in the
nature of reliability. Similarly, the time dependence of failures can be
viewed in terms of failure modes to differentiate between failures caused by

different mechanisms.
Reliability can be expressed in terms of the time to failure 7', as
following:

R(t)=P(T>t)=1-F(2). (1.1)

Thus, reliability is the probability of no failures (survive) in the interval
[0,¢]or, in other words, the probability of failure after time ¢. However,
most of the time 7" will be a continuous random variable and its distribution

F(¢) will be a continuous distribution having a density function f(¢), so the

2



reliability can be written as:

R(t)=1—F(t)
—1- [0’ f(0)dt

= L F(@)dt. 12

Figure 1.1 presents the relationship between f(¢), F(¢), and R(?)
graphically.

fit)

0

Figure 1.1: Relationship between 1 (¢), F(¢), and R(¢)

1.1.2 Failure rate function (Hazard function)

Sometimes it is difficult to assign the distribution function of 7'directly
from the physical information that is available. A useful function in
clarifying the relationship between physical modes of failure and the

probability distribution of 7'is the conditional density function/(¢), which
called the hazard function or failure rate function.

The hazard function is defined as the instantaneous conditional

probability of failure in a small interval of time (¢ + A¢) divided by the width

of the interval.



P<T<t+A/T>1)

h(t) =1
0= lim A
o P<T<t+NMAr)
= lim .

Since,

R()=P(T>1),

and

P(t<T<t+At)=P(T <t+At)-P(T <t)
= R(t) - R(t + A?).

Then the hazard function A(¢) becomes,

o= i SO
1 =d
= R(t)[ 7 R()]

_JO,
R@) (1.4)

In some situations there is interest in a function called cumulative

hazard function.

H(t)= jo’h(t)dt

= t&dﬁ
01-F(2) (1.5)
h(t) == ]f'(t )
It is seen that ®
_—d(InR@t))
dt
then, R(t)=e " and H(t)=-InR(?) (1.6)



Thus the condition that R(#) <1 indicates that H(¢) > 0. The cumulative

hazard has been proposed as an effective characteristic to use as a basis for
the determination of the failure distribution through the use of plotting

techniques (see, for example, Nelson (1972) or Nelson (1982)).

1.2 Stress-Strength Reliability Model

Stress-strength reliability model is one of the most important models
that measure the reliability of the product. The term "stress" mean any
applied load or load-induced response quantity that has the potential to cause
failure. The stresses that cause the failure mechanism can be mechanical (as;
deformation, fracture, rupture), -electrical(as; electrostatic discharge,
dielectric breakdown, junction breakdown in semiconductor devices, hot
electron injection, surface and bulk trapping, surface breakdown),
thermal(as; heating temperature, thermal expansions and contractions),
radiation(as; radioactive containment, secondary rays), and/or chemical(as;

corrosion, oxidation).

Often an item failure can be the result of interactions among these
various types of stresses. Temperature has a strong effect on the failure of
electronic components. Lall (1996) discussed the effect of temperature on
the reliability of microelectronics. The term "strength" mean the ability of

the component or system to withstand the applied load ("stress").

It 1s a well accepted fact that the strength of a manufactured unit is a
variable quantity that should be modeled as a random variable. This fact
forms the basis for all reliability modeling. A second source of variability
may also have to be taken into account, when checking the reliability of
equipment on the viability of a material, it is also necessary to take into

account the stress conditions of the operating environment.



That 1s, uncertainty about the actual environmental stress to be
encountered should be modeled as random. The expression stress-strength
model makes explicit that both stress and strength are treated as random

variables.

If X is the strength of a system (or component) which is working
under a stress Y, both Xand Yare generally assumed to be random

variables, then stress-strength reliability R of the system is defined as:

R=P(Y < X). (1.7)

Assume X, and Y are statistically independent random variables with

pdf f(x)and g(y), respectively, then the stress-strength reliability can be
obtained as:

R=P(Y <X).
- fwfw f(x,y) dydx.
B fooofw f(x)g(y) dydkx.

- fw f()G,(x) dx. (1.8)

1.3 Reliability for Multi-Component Stress-Strength Model

Several methods exist to improve the system reliability like using large
safety factors, reducing the complexity of the system, increasing the
reliability of the components, etc. Reliability of a system can be improved
by adding one or more similar components in a certain configuration. There
are several types of configurations available, such as, series configuration,
parallel configuration, mixed configuration, series-parallel configuration,

parallel-series configuration, s —out — of — & configuration, and others.



Bhattacharya and Johnson (1974) have suggested a system consisting
of kidentical components and defined a multi-components —out —of — &
stress-strength model. Bhattacharya and Johnson (1975) study the condition
where a system, consist of kcomponents, functions when at least
s —out —of —k components survive a common chock of a random
magnitude.

Let the random samples Y, X, X,,---,X, be independent, G(y)be the
cumulative distribution function of stress Yand F(x) be the common
cumulative distribution function of strengths X, X,,---, X, . The reliability

for a multi-component stress-strength model is given by:

R, = Plat least s of the (X}, X,, -+, X} ) exceed Y]

k(K oo | |
= Z(Z j [ [1=FONTF»TdG(y). (1.9)

Stress-strength reliability is estimated to obtain the reliability function
of the parameters for each used distribution. Two methods of estimation are

used maximum likelihood and Bayesian estimations.

1.4 Some Applications of Stress-Strength Models

In their landmark book on stress-strength models, Kotz et.al (2003)
detail many examples of stress-strength models in a survey of scientific

literature. These include such applications as:
Reliability of rocket engines:

When Xis the strength of a rocket chamber and Ystands for the
maximal chamber pressure which is generated when a solid propellent is
ignited, P(Y <X) is the probability that the engine will be fired

successfully.



Earthquake Resistance:

The strength stress model was used to study the risk of an earthquake
posed to a particular nuclear generator. With no concrete numbers to define
the strength, the researcher took strength estimates from five experts and
used the log-normal distribution as a model and a weighted least squares
procedure to estimate the strength. A similar procedure was used for the

stressor, and the conclusion P(/nY <I[nX)=0.99978 was reached a very
reassuring number, if accurate.
In a medical study:

The reaction of leprosy patients to a medicine was modeled on a

P(Y < X) stress-strength model. Initial condition (infiltration status) was

taken as X', and Ythe change in health after 48 weeks of treatment. The null
hypothesis, that initial infiltration values did not affect outcomes, was

strongly rejected after an analysis of the data.

1.5 Methods of Estimation

Estimation is one of the important problems in statistical inference, that
using a sample of data to guess or estimate the characteristics(parameters)
for a population model from which the data are assumed to arise. When you
want to determine information about a particular population characteristic
(for example, the mean), you usually take a random sample from that
population because it is difficult to measure the entire population. Using that
sample, you calculate the corresponding sample characteristic, which is used

to summarize information about the unknown population characteristic.

The population characteristic of interest is called a parameter and the
corresponding sample characteristic is the sample statistic or parameter
estimate. Because the statistic is a summary of information about a
parameter obtained from the sample, the value of a statistic depends on the

particular sample that was drawn from the population. Its values change

8



randomly from one random sample to the next one, therefore a statistic is a

random quantity(variable).

The objective of statistical estimation is to assign numerical values to
the parameter based on the sample data. There are two main methods of

estimation point estimation and interval (or confidence interval) estimation.

1.5.1 Point estimation

Point estimation is to estimate one value for the unknown parameter
from the desired distribution to choose an estimator. A number of properties
that evaluate the performance of the procedure in the context of the assumed
distribution function are considered. We look at a few of these in the next

subsection.
Properties of best estimator

Now, we define some basic properties that must be satisfied for the

point estimator to be good.
- Unbiased.

A point estimator is unbiased for a parameter if the mean(expectation)

of the estimator’s sampling distribution equals the value of the parameter;

i.e. E(Q)=0, otherwise, the estimator is biased.

2- Minimum MSE.

The mean square error(MSE) of 4(the estimator of @) is the expected
value of (6 —6)2.

MSE(@) = E(§ - 0)* (1.10)

MSE is a measure to the goodness of a point estimator, it is always

non-negative, and values closer to zero are better.

3- Consistency.
An estimator Qof @, is said to be consistent if for any ¢ >0 and all

9



possible values of 8, P(|6 -6 [>¢)— 0 as n— o.Then for a consistent

estimator the probability that the estimate will deviate from the true value by
any amount, no matter how small, approaches zero as the sample size
becomes increasingly large; i.e., for large samples the estimate will be very

close to the true parameter value with high probability.

4-Sufficiency.

An estimator 6 <of 0 1s sufficient if the conditional distribution of the

random sample X, X,,---, X, given 6 does not depend on 6. This implies

that the estimator contains all information in the sample about the parameter.
It 1s sufficient to know its value; given that, no additional information about

0 1s contained in the data.
5- Efficiency.

The efficiency of an estimator is measured in terms of its variability.
The rationale is that use of an inefficient estimator requires more data to do
as well and hence it costs less to use an efficient estimator. Efficiency of an
estimator may be assessed relative to another estimator or estimators relative

efficiency or relative to an absolute standard.

Let 0, and O, are two unbiased estimators of @, then 6, is more
efficient than 0, if Var(0,) < Var(8,).
6-Minimum Variance Unbiased Estimator (MVUE).

An unbiased estimator 6 of a parameter @, is said to be minimum

variance unbiased ifVar(0) < Var(6) for any other unbiased estimator 6

and for all possible values of 8.Rao-Blackwell theorem is used to find the

uniformly minimum variance unbiased estimator(UMVUE).

10



Theorem 1.1 (Rao-Blackwell Theorem)

Let 6 an estimator of 6 with E(6%) for all 6 < oo. Suppose that T is a

sufficient statistic for @, and let @ = E(6/T) is a function of the sufficient

statistic for 6, then for all 6:
E(O-0)*<E® -0)".

We now have a quantitative rationale for basing estimators on sufficient
statistics: if an estimator is not a function of a sufficient statistic, then there
1s another estimator which is a function of the sufficient statistic and which

is at least as good, in the sense of mean squared error of estimation.

1.5.2 Maximum likelihood estimation

Given X,,X,,---,X, an iid sample with probability density function
f(x;;0), where ® 1s a (kx1) vector of parameters that characterize
f(x;;0). The joint density of the sample 1s, by independence, equal to the

product of the marginal densities:
f(xlsxzs"'sxn):f(xl;@)f(xz;@)”'f(xn;@)

11/ :0).
= (1.11)

The likelihood function is defined as the joint density treated as a

functions of the parameters ©.

L(@/xlsxzs”'sxn) = f(xlsxza"'axn)

11/ :0).
= (1.12)

The maximum likelihood estimator (MLE ) denoted by ®, ., are the

values of ® that maximizes the likelihood function L(®/x,).

11



@mle —arg max@ L(@/xi)a (1 13)

where
0=1{0,,0,,-,0,}.

The maximum likelihood estimator(MLE) of the parameters © is
obtained by differentiation of the likelihood function L(®/x;) with respect to

these parameters and equal to zero. In practice, when finding the maximum
likelihood estimator, it is often easier to find the value of the parameter that

maximize the natural logarithm of the likelihood function /(®/x;) rather than

the value of the parameter that maximize the likelithood function itself.
Because the natural logarithm is an increasing function, the solution

will be the same. If /(®/x,)1s differentiable with respectto the parameters,

we can find the M1 estimator @ of O as a solution of the system of equations;

OlogL(®/x;) _ 0L(O)x;) _ 0
00 00 (1.14)

The obtained solutions are necessary critical points (maximum,

minimum, or saddle point) of the log-likelihood function, To actually prove

d*i(6)

92

that the solution 1s a maximum, we need to show in scalar case <0

for one parameter, or if 6 is a vector that the Hessian matrix H (@) defined

3%0(0)
00,00 .

J

by H(O) —( ] , 1, j=1,2,....,k is negative definite.
kxk

The equation

=0for scalar 8 or the system of equations

(o)
)

0 .
56(9)20’ for vector 6has a unique root 6e (—,),if and only if,
J

12



J(=0)>0 and J(x) <0, where J(0)= %K(@) :
If /(0) has multiple local maxima, we pick the solution that is the
highest of all the maximizers. For further information see Ghitany et al.

(2014) and El-Din et al. (2017).

The method of maximum likelihood is the most popular technique for
deriving estimators, it find an estimation of the unknown parameter that give
the max probability of the observed data. In our research, we not only
estimate the parameters which is the characteristics of an distribution, but

also estimate a function of these parameter.

Stress-strength reliability estimation is our problem, as shown in
Eq.(1.8) that Ris a function of the prameters of the probability density

functions f(x)and g(y), so the maximum likelihood function will be equal
to the product of the marginal densities.

Suppose that X, X,,---, X, are random samples from distribution , and
Y,,Y,,---,Y, are random samples from another distribution, and X ,Yare

independent and identically (iid) random samples, then likelithood function

can be written as:
LX) =[1/)] g0,
i=1 J=1 (1.15)
where O is the estimated parameters which arises in f(x)and g(y).

Definition: Invariance property of maximum likelihood estimators

One of the attractive features of the method of maximum likelihood is

its invariance to one-to-one transformations of the parameters of the log-
likelihood. That is, if 0 is the MLE of 6 and g =h(0) is a one-to-one
function of 6 then & = h(6)is the MLE for g.Other estimates do not possess
such an invariance property, like Bayes estimates.
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Asymptotic Properties of Maximum Likelihood Estimators

Much of the interest of maximum likelithood estimators is based on
their properties for large sample sizes. We summarizes some the important

properties below;

1.Consistency
The estimate @ is called consistent if:
0 — 0, in probability as n — o,

where 0, 1s the true unknown parameter of the distribution of the sample. In

words, as the number of observations increase, the distribution of the
maximum likelihood estimator becomes more and more concentrated about

the true state of nature.
2.Asymptotic normality

Using the Central limit theorem; we say that 6 is asymptotically normal if:

(n(0 —0)—d>N(0,1‘1 (©)). as n— oo,

d
where — means converge in distribution, and /' (®) is the inverse of the

Fisher information matrix /(©).

The Fisher information Matrix

First we define the Hessian matrix, which is a k£ x k& symmetric matrix
whose element is given by of second derivatives of the log-likelihood
function /(®/X).
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E( ) ( ) o ()
06,00," 00,00, %0,

(1.16)

The Fisher information matrix is defined as minus the expectation of

the Hessian matrix:

1(®/X)=-E(H(0/X)). (1.17)

This definition corresponds to the expected Fisher information matrix.
If no expectation is taken we obtain a data-dependent quantity that is called
the observed Fisher information. Fisher information matrix essentially
describes the amount of information data provide about the unknown
parameters. It used in finding the variance of an estimator, as well as in the

asymptotic behavior of maximum likelihood estimates.

1.5.3Interval Estimation

In point estimation of a parameter or other population characteristic, we
use a single number to estimate a parameter or a set of k& numbers to
estimate a k -dimensional parameters. For MLEs, we also gave MSE of the
estimators, which is a measure of uncertainty in the estimate. A confidence

interval (or confidence interval estimator) takes this uncertainty into account
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by providing an estimate in the form an interval of numbers along with a
measure of the "confidence" one has that the interval will, in fact, contain
the true value of the parameter or characteristic being estimated. Fork
parameters, a separate confidence interval may be calculated for each, or a k

dimensional confidence region may be defined.

In the case of a single parameter, say 6, a confidence interval based on
a sample of size n, X,,X,,---,X, 1s defined as an interval defined by two
limits, the lower Ilmmit L,(X,,X,,---,X,) and the wupper limit
L,(X,,X,,---,X,) , having the property that

Li(Xp, X, X,) SO S Ly(X), X0, X,) =7, (113)

where y (the confidence coefficient) is a constant with 0 <y <1.

Then the confidence coefficients is the probability that the interval estimate
will contain the parameter. Confidence is usually expressed in percent; e.g.,
if y=0.95, the result is a "95%" confidence interval" for . It is desirable
in practice that the width of a confidence interval be small, i.e., that the
result be precise in the sense that we can have high confidence that the true
value of the parameter lies within a relatively narrow interval (or small

region, in the multi-parameter case).

In general, the width of the interval depends on the data and on the
desired confidence. The width of the confidence interval has the following

properties:
* Decreases as n increases.
* Increases as the confidence coefficient y increases.
* Decreases as the variability in the data decreases.

Thus in theory, the width of the confidence interval can be controlled,
but in practice this is not always easy. In particular, it usually means

incurring the expense of obtaining large samples.
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There are a lot of methods for interval estimation such as; Asymptotic
confidence interval using the Fisher information matrix, HPD
interval(highest posterior density), and bootstrap confidence interval, see
Efron’s (2003).

1.5.4Bayesian Estimation

Bayesian inference grows out of the simple formula known as Bayes
rule. Assume we have two random variables A and B. A principle rule of
probability theory known as the chain rule allows us to specify the joint

probability of A and B taking on particular values a and b which gives us:
Joint probability = Conditional Probability x Marginal Probability.
Thus we have:

P(a,b)=P(a|b)P(b) (1.19)

There is nothing special about our choice to marginalize B rather than

A, and thus equally we have:

P(a,b)=P(b|a)P(a) (1.20)
When combining the two equations (1.19),(1.20) we get:
P(a|b)P(b)=P(b|a)P(a) (1.21)
rearranged as:
P(a|b)= Pola)Pa)
P(b) (1.22)

and can be equally written in a marginalized form as:

P(b|a)P(a)

b) = .
Plalb) [P(b|a")P(a")da'

(1.23)

This expression is Bayes Rule, which indicates that we can compute the
conditional probability of a variable A given the variable B from the
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conditional probability of B given A. This introduces the notion of prior and

posterior knowledge.

A prior probability P(a) is the probability available to us beforehand,
and before making any additional observations. A posterior probability

P(a|b) is the probability obtained from the prior probability after making

additional observation to the prior knowledge available. The additional
observation was observing that B takes on value b. When dealing with
parameter estimation, 8 could be a parameter needed to be estimated from
some given evidence or data. The probability of data given the parameter is
commonly referred to as the likelihood L(data |6). And so, we can compute
the probability of a parameter given the likelithood of some data, which

called the posterior function.

L(data | 0)r(6)
[L(data | 0)z(0)d0"

(0 |data) = (1.24)
Thus the inference concerning 0 is then based on its posterior function
(0 |data) .

1.5.4.1 Prior distributions

An important problem in Bayesian analysis is how to define the prior
distribution. For prior distributions in Bayesian inference, the most used
priors are conjugate and non informative priors, described as following:

a- Conjugate priors

A prior is said to be a conjugate prior when the prior and the posterior
belong to the same distribution family. For example in the case of a binomial
likelthood we have just seen that any beta prior we use will result in a
posterior that is also a beta distribution. In this case the beta distribution is a
conjugate prior for the Binomial likelithood. Conjugate priors are very useful
as they provide simple analytic solution to this type of inference problem,
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but they are also somewhat limiting since our prior belief may not be

representable using the conjugate family’s parameterization.

b- Non-informative priors

Non-informative priors are used when relatively little information is
available about prior sampling of the parameter @, thus, a prior is non-
informative if it has minimal impact on the posterior distribution of . The
uniform distribution is frequently used as a non-informative prior. In some
cases, non-informative priors can lead to improper posteriors (non integrable
posterior density). You cannot make inferences with improper posterior

distributions .

1.5.4.2 Loss function

Bayesian estimation is a special case of decision rule that minimizes

the expected loss value, to achieve a minimum probability of error. Consider
0 is an estimator of 6, loss function Ls(0,0) is used as a measure of error,

it is defined as a real-valued function that satisfying:
« Ls(6,0) > 0 for all possible estimators 6 and all 0 e 0.
« Ls(0,0)=0 for 6=0.
We obtain a Bayes estimate, 6 of the parameter 6 by choosing a
particular form of loss function, Ls(6,60). To obtain the Bayes estimate first

we need to find the posterior expected loss E(Ls(6,0)) by
I@Ls(éﬁ) (0 | data) dO which is also known as the posterior risk for 6.

Then we minimize it with respect to 6. 1t is to be noted that different
Bayes estimates of 6 will be obtained depending on the different loss

functions.
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Depending on the complexity of the loss function L and the posterior
distribution 7(8 | data), the value of 0 may be determined analytically or

numerically.

In general, it 1s difficult to determine the value of 0 analytically
because of either the complicated posterior distribution or the complex loss
functions. Nevertheless, there are some loss functions for which the

analytical Bayes estimates are feasible.

Three different types of loss functions are used in the next chapters,

described as following:
I-Squared error loss function (Se):

It is a symmetric function given by
Lsg,(0,0)= (0-0)° (1.25)

Under the squared error loss function (Se), the Bayes estimate for 6 is

the posterior mean which given by:
Os. = E(©).
= jge 7(0 | data)do.(1.26)

2-Linex loss function (Lx):

A very useful asymmetric loss function, introduced by Varian (1975),
which mean linear-exponential loss function. It become approximately linear

to one side of the origin, and approximately exponential to the other side.
Ls, (6,0) = exp[c(0 —0)]—c(6—0)—1. (127)

Where cis constant, ¢ # 0. The sign and the magnitude of crepresent

the direction and the degree of asymmetry, respectively.

The Bayesian estimate under the linex loss function (Lx) is given by:
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A J—

0, = —1 Zn{E (exp(—c 0))},
¢ (1.28)

provided that the expectation E(exp(—c 0)) is finite. Several papers have

applied this loss function with different value for the constant ¢ as; Zellner
(1986), Basu and Ebrahimi (1991), Soliman (2000) and Parsian and
Kirmani(2002).

3-General entropy loss function (Ge):
This loss function is asymmetric loss function,given by :
Ls,(6,0) (9)‘1 —q Zn(g) ~1.
0 0 (1.29)

The Bayes estimate relative to the general entropy loss function (Ge) is

given by:
0. = {E@) " (1.30)
where ¢ 1s constant.

For g =1 the Bayesian estimate with (Ge) become the Bayesian

estimate under the squared error loss function. Calabria and Pulcini (1994)

used this function for a different values of ¢ . Pandey and Rao (2009), and
SankuDey (2010) have used this loss for Bayesian estimation.

1.5.5 Monte Carlo methods for Bayesian computations

Monte Carlo methods is a class of computational algorithms that
depend on repeated random sampling to obtain numerical approximations,
often they used for evaluating complex integrals; see Smith(1991). Monte
Carlo methods are based on random samples generated from a density
related to a parameter of interest, which denoted by the posterior function in
Bayesian estimate. The most popular method to do this today is the Markov
Chain Monte Carlo (MCMC) method.
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MCMC is a class of methods for sampling a pdf using a Markov chain
whose equilibrium distribution is the desired distribution. Once we have a
sample distributed according to some desired distribution, we can compute
expectation values and integrals of various quantities in a process analogous
to Monte Carlo integration.

For example; Combining Eq. (1.24), and Eq. (1.26) to get Bayesian estimate

of 6 under squared error loss function, then we have the following equation:

O, = I@Hﬂ(@ | data)do.

B j@e L(data|0)7(0)d0
- [ L(data|0)z(0)d0 °

(1.31)

where L(data|0) is the likelihood function, and 7(80) is the prior function.

The explicit evaluation for Eq. (1.31) is not possible, and become more
difficult for the high dimensional parameters. Monte Carlo method provides
a technique where we can sample from the posterior directly, then obtain
sample estimate of this integral, thus we can perform the integration in
implicit form. Some methods of Monte Carlo technique have been

introduced as the following:
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1.5.5.1 Gibbs sampling

The main basis MCMC method is Gibbs sampling, which is a special
case of the Metropolis-Hastings (MH) algorithm that is very simple to use in
practice. As discussed in Besag and Green (1993), the Gibbs sampler is
founded on the ideas of Grenander (1983), while the formal term is
introduced by Geman and Geman (1984). The primary bibliographical
landmark for Gibbs sampling in problems of Bayesian inference is Gelfand
and Smith (1990). Suppose we have a set of k& parameter vectors;

®=0,.,0,,--,0,, where each 9, could be a scalar or a vector of parameter,
and let 7(®/data) be its posterior distribution given the data. Then, the basic

algorithm of the Gibbs sampler is given as follows:
* Stepl: Choose an arbitrary starting value of O, andset i=0.
« Step2:  Generate 6, from 7(8,/0,’,---,0,’,data).
- Step3: Generate 0, from 7(0,/0,",0,',---,0,' ,data).

» Step4: Generate 0, from 7(6,/6,"",0,"",---,0,,"  data).
* Step5: Set i =i+1, and go to Step 1.
The above conditional distributions are the transition distributions of a

Markov chain that converges (under very general conditions) to a unique

stationary target distribution that is the posterior distribution 7(®/data). The

generic Gibbs sampler algorithm is to draw one value for each @' from its
conditional distribution and cycle through these conditionals repeatedly.
This approximation can be made arbitrarily accurate by increasing the
sample size, k. Given that it is now computationally inexpensive to obtain
tens of thousands of draws on any standard computer for all but the most
complex and highly dimensional models, Gibbs sampling is an easy way to

draw posterior inferences concerning any unknown quantities in a model.
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1.5.5.2 Metropolis Hasting algorithm (MH)

The most general MCMC algorithm is the Metropolis-Hastings(MH)
algorithm, which was originally introduced by Metropolis et al.(1953), and
subsequently generalized by Hastings (1970). Tierney(1994) gives a
comprehensive theoretical presentation of this algorithm, and Chib and
Greenberg(1995)introduced an excellent tutorial on this topic. The
Metropolis-Hastings (MH) algorithm simulates samples from a probability
distribution by making use of the full joint density function and

(independent) proposal distributions for each of the variables of interest.

Suppose we are interested in sampling from the posterior distribution

r(6/data), MH algorithm uses a two step process:
* Specify a proposal distribution ¢(6,9).

* Accept draws from ¢(60,9) with acceptance ratio

o(6,,6%) = min| "I 450 |
v 7(0/D) ¢(0,9)" |

Also letU(0,1)denote the uniform distribution over(0,1), The

Metropolis-Hastings algorithm for sampling from the posterior distribution
(0/D) can be described as follows:

 Stepl: Choose an arbitrary starting value of 6,,, and set i = 0.
« Step2: Generate a candidate point 0% from q(0,....) and u from U(0,1).
- Step3: Set 6, =0 if u < a(0,,0%), otherwise 6,,, = 6,.

* Step5: Set i=i+1, and go to Step 1.

The above algorithm is very general. When ¢(9,0)=¢q(9), the

Metropolis-Hastings algorithm reduces to the independence chain

Metropolis algorithm(see Tierney 1994). The Gibbs sampler can also be
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shown to be a special case of the MH algorithm that uses conditional
distributions as proposal distributions with acceptance probability always
equal to 1 (a(6;,09) = 1); see Geyer (2011).

1.5.5.3 Importance Sampling technique (IS)

Importance sampling (IS) refers to a collection of Monte Carlo
methods where a mathematical expectation with respect to a target
distribution is approximated by a weighted average of random draws from
another distribution. Together with Markov Chain Monte Carlo methods,
Importance sampling has provided a foundation for simulation-based
approaches to numerical integration since its introduction as a variance
reduction technique in statistical physics; see; Hammersely and Morton
(1954), and Rosenbluth and Rosenbluth (1955). Importance sampling
Technique has suggested by Chen and Shao(1999). Nowadays, IS is used in
a wide variety of application areas and there have been recent developments

involving adaptive versions of the methodology.

The principle idea of the IS estimation can be explained as following;

Let p(x) be a probability density for a random variable X and suppose we

are interested in computing an expecation 4 ., where:
My =E(f(X))
= [/ p(x)dx. (1.32)

Sometimes, it is typically difficult to sample directly from p(x),

therefore in practice one usually resorts to drawing from the so called

importance density g(x) with the support including the one of the density of
interest p(x). It is assumed the sampling from ¢g(x) is relatively easy and

inexpensive. This method of simulation based estimation is called
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importance sampling (IS). Using g(x), the expecation u, can be expressed

in the following way:

uy =1 B o

p(X)
q(X)

= E {f(X)wW(x)}. (1.33)

Where E_ stands for expectation with respect to density ¢(x) and

= E {f(X) ;-

w(x) 1s known as the importance weight function. Therefore a sample of

independent draws x,;---;x, from q(x) can be used to estimate u, by
He = ; 2 J (x)w(x;).(1.34)
i=1

In many applications the density p(x) is known only up to a
normalizing constant. Here one has w(x)=cw,(x) where w,(x) can be

computed exactly but the multiplicative constant ¢ is unknown. In this case
one replaces (i, with the ratio estimate:

> (5w

iw(xi )

Importance sampling is widely used in Bayesian computation, see

A

Hy .(1.35)

Geweke (1989). This approach provides a focus on an important part of the
posterior distribution, which is obtained first, by an appropriate weighting of
draws, and second, by generating them from an optimal, tail-focused
density. Geweke (1989) also provided guidelines on how to choose a good
importance sampling density that has a shape similar to the desired posterior
density. It is well-known that using importance sampling, one can easily
approximate the posterior expectations.
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1.6 Mentioned Statistical Distributions

We present here the two basic distributions that will be used in the

subsequent chapters.
1.6.1 Quasi Lindley Listribution (QLD)
The QLD which introduced by Shanker et al. (2013) of which the

Lindley distribution is a particular case.

The QLD has a pdf given by:

=2 (ararye,
a+1 (1.36)

and CDF:

F(x) :1_[w e—@x:|,

a+1 (1.37)
where x > 0,0 > 0,a > —1.
1.6.2 Exponentiated Generalized Inverse Weibull Distribution (EGIW)

The EGIW distribution which introduced by Elbatal and Muhammed

(2014) as extension of exponentiated generalized family.

The EGIW distribution has a pdf f(x) and CDF F(x):

RRCT IREATN b e T
f(x)=ap0r’x e = |1-e = I-(1-e * )*| , (1.38)

e T
Fxx)={1—(1—e(x))“}a (1.39)

where x > 0,4,0,a, B > 0.
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1.7 Review of Literature

Several authors have discussed the problem of estimating the stress-
strength reliability assuming various lifetime distributions for the stress-
strength random variates. The term stress-strength was first introduced by
Church and Harris (1970) which introduced the estimation of R when X and
Y are normally distributed. Downtown (1973) suggested the minimum
variance unbiased estimator of P(Y <X) as alternatives to the
asymptotically equivalent estimator used by Church and Harris (1970) to
obtain confidence intervals for that probability for the same distribution.
Bhattacharya and Johnson (1974) have suggested a system consisting of ‘k’
identical components and introduced a multi-component s out of k stress-

strength model.
Tong (1977) discussed the estimation of P(Y < X) for exponential
families. Some inference results in P(Y < X)) for the bivariate exponential

model has been achieved by Awad et al. (1981). Pandey and Borhan (1985)
presented the reliability in a multi-component stress-strength system when

both stress and strength follow Burr distribution.

Awad and Gharraf (1986) introduced a three estimators for P(Y < X)

when Y and X are two independent but not identically distributed Burr
random variables. Kakati and Srivastav (1986) studied an accelerated life
testing problem for the stress-strength model. The system reliability
estimation in multi-component stress-strength systems has been discussed by
Pandey and Upadhyay (1986) when stress and strength are Weibull

distributions with equal scale parameters.
Gupta and Gupta (1990) considered estimation of P(X >Y) in the
multivariate normal case. McCool (1991) examined inference on P(Y < X)

in the case of Weibull distribution. Nandi and Aich (1994) have discussed
the problem of estimating the reliability P(Y < X)) that appears in stress-
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strength relationship where X follows an exponential distribution while Y

has an inverse Gaussian / half normal / half Cauchy distribution.

Pham and Almhana (1995) have presented basic properties of three
parameter generalized gamma distribution,also introduced results on the

hazard rate and stress-strength model of the generalized gamma distribution.

Inference for P(Y < X) in the Burr type X model has been investigated
by Surles and Padgett (1998, 2001). Gupta and Brown (2001) introduced

reliability studies of the skew-normal distribution and its application to
stress-strength models. A good application on the different stress-strength

models can be found in the research by Kotz et al.(2003).

Some of studies on the stress-strength model can be obtained in Kundu
and Gupta (2005,2006), Ragab and Kundu (2005), which considered this
problem when X and Y are generalized exponential, weibull and Burr type X
distributions respectively. The reliability of a stress-strength model with
Burr type III distribution has been discussed by Mokhlis (2005).

Kantam et al.(2007) introduced stress-strength reliability model in log-
logistic distribution. Krishnamoorthy et al. (2007) introduced an inference
on reliability in two-parameter exponential stress-strength model. Raqgab et
al.(2008) introduced the estimation of P(Y < X) for the three-parameter
generalized exponential distribution. Stress-strength reliability for three-
parameter Weibull distribution has been discussed by Kundu and Raqab
(2009).

Gupta et al.(2010) derived the estimation of reliability from Marshall-
Olkin extended lomax distribution. Estimation of stress-strength reliability in
multi-component model for log-logistic distribution has been discussed by
Srinivasa and Kantam (2010).

Stress-strength  reliability for Lindley and weighted Lindley
distributions considered by Al-Mutairi et al. (2013), (2015) respectively.
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Singh et al.(2014) introduced the estimation of P(Y < X)) for generalized
Lindley distribution. Khan et al. (2015) studied the estimation of stress-
strength reliability model using finite mixture of two parameter lindley
distributions.

Recentely; Hanagal and Bhalerao(2016) discussed generalized inverse
Weibull software reliability growth model.

Actually, it is impossible to mention here every author who contributed

to the development of stress-strength model.
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CHAPTER 2
Estimation of Stress-Strength Reliability for the Quasi Lindley

Distribution

2.1 Quasi Lindley Distribution (QLD)

As mentioned at the end of chapter 1, Lindley distribution and all
distributions that relate to it have been widely used for studies on stress-
strength reliability. For example; Al-Mutairi et al.(2013),(2015) presented
the stress-strength reliability for Lindley and weighted Lindley distributions
respectively. Stress-strength reliability estimation for generalized lindley
distribution has been introduced by Singh et al.(2014). Recentely Khan et al.
(2015) studied the estimation of stress-strength reliability model using finite

mixture of two parameter lindley distributions.

This chapter is focused upon upon studying the problem of the
estimation of the stress-strength reliability for the QLD introduced by
Shanker et al. (2013) of which the Lindley distribution is a particular case.
We will estimate the parameter of the stress-strength reliability Rusing the
maximum likelihood, and Bayesian estimation methods. The asymptotic
confidence interval of Rwill be computed based on the asymptotic
distribution of the MLE of R. In Bayesian estimation we will introduce two

sampling methods (Importance Sampling and Metrolopis-Hastings).

The QLD has a pdf given by:

£(x) =i(a +x) e ®, 2.1)
a+1
and CDF:
F(x)zl_[(1+a—% e—é’x], (2.2)
a+1
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where;
x>0,0>0,00 >-1.
It can easily be seen that at o =60, Eq.(2.1) reduces to the pdf of

lindley distribution and at o = 0, it reduces to the pdf of gamma distribution

with parameters (2,6).

The graphs of density and distribution functions of QLD for different

values of its parameters o and 6 are shown in Figure(2.1), (2.2).
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Figure 2.1: Pdf of the QLD for some parameter values ., 0
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Figure 2.2: CDF of the QLD for some parameter values ¢, 6

The quasi Lindley distribution has a survival and hazard rate function
respectively given by:
S(x)=1-F(x)
_(I+a+06x) o (2.3)
(a+1) ’

and
AC))
(S A Ry

_0(x+6x)
(1+a+6x)

(2.4)

Figures 2.3 and 2.4 illustrate survival and hazard (failure) rate

functions of QLD for selected values of the parameters.
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Figure 2.4: The hazard rate function of the QLD for some parameter values o, 0
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2.2 Stress-Strength Reliability for QLD

Assume X :QLD(6,,a,) and Y :QLD(6,,a,) are independent random
variables with pdf f(x) and g(x), respectively. Then the stress srength
reliability can be obtained as:

R=Pr(Y <X).
N I: L: f(x)g(y) dydx.

= j: F(¥)G(x) dx.

_ IOO HI (051 + HIX) e—le 1— [(1 + a, + HZ'X) e—sz] dx.
O o+l o, +1

[0 e g2 0@0 O (14 0 +0:0) SO
0 a+1 (@ + 1)@, +1) .
=1- ‘ (29192 " (61 +9, )(05291 + o0, + Hl)+ 0513(052 + 1)(91 +6, )2 )
(@ + Dy + 100, +6,) .

2.3 Multi-component Stress-Strength Reliability for QLD
Assuming that F(.)and G(.) are quasi Lindley distributions with

unknown parameters 6,,0,,(¢,a,, and that independent random samples

X, Xy, X, and VY,Y,,---,Y ~ are available from F(.)and G(.)

n m

respectively. The reliability in multi-component stress-strength for quasi

Lindley distribution using Eq.(2.2) is:

k
Z[ ]I 1= FO)TF () dG(y)

=S
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a, +1 o, +1
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: D [T+ Oy yirinO2l@ 0o7), , Opteiveny p
0 o, +1 o, +1

AE o
]( ](H]l]( R e R
L\ J2 o +1 a, +1

% 6(_02 +(i+j1)6) ))’dy'

k\( k- |
U( ][lﬂ]( g %
Ji Js 1+1 o, +1

(=0, +(i+/1)6; )ydy

o I;o[azyjze(fef(njl)el)y +szj2+1e(792+(i+j1)91)y]dy.
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:ik i (k](k—i](i+j1](_l)jl 0,6, |
i=s =1 ,=1\0 )\ J2 (a, +1)(a; +1)"

L+l TGy+2)
? 0, +(+ ]'1)6)1)12Jrl ? (0, + (i +j1)91)12+2

2 :Zk—i i+ (k](k—i](i—i—jl] (_1)1'1 (jz)! 02011'2
e i =l,=1 U\ J2 (a, +1)(a; +1)"

x[a2(92 +(+1)0) + (), +1)6?2]
(0, +(i+j1)01)j2+2 .

].

2.4 Maximum Likelihood Estimation for R

(2.6)

Suppose that X, X,,---,X is random sample fromQLD(6,,a,), and

1,Y,,---,Y is random sample from QLD(6,,c,),then the jointly-likelihood

function of X and Yis given by:

L)) =T 1) [Two)

_ ﬁ 0,(c; + 6,x) e—elxﬁ 0,(a, +6,x) o0
i—o oy +1 =0 o+l
0, 0,”

= ; o, +0x)e " x
(051+1)n11—£( 1 +0x)

(o +1)7 5

n m —anelxi —iez)’_/ n
__4 . % —e 7 e [](a,+6x)
(o +1)" (ay +1) i=0 ;
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Then the log likelihood function can be written as:
E(x,y;(/_b) =n log(H1 ) +m log(H2 ) -n log(Ot1 + 1) —m log(oc2 + 1)

-0, in -0, Zyj + Z:log(a1 +91xl-)+ Z:log(a2 +6,y; )
i=1 =1 i=1

=1
2.7
The MLE of ¢ =(6,,,6,,a,) can be obtained as a solution of the

following equations:

1oy +0x, (2.8)

=RE=T PR (2.9)
or _  n N R 0,
doy oy +1 Fa +0x (2.10)

and

or i
80!2 0!2 +1 j: +02yj (211)

Solving these equations numerically using an iterative process as
Newton Raphson to get 6,,d,,0,,d,. It is well known that the method of

maximum likelihood estimation has invariance property, then the MLE of R

and R, can be obtained as following:

é1(2é1é2+(9 +0)(a29 +a,0,+0 ) 022+1( éz)zj
a1+1 a2+1( +0 )3 .

(2.12)

38



() 0,0
(@, +1)(é, +1)"

S 10 M Ve

[0‘2(‘9 +(l+]1)0)+(]2+1)02] (2.13)
(O + (i +j)6)">"

2.5 Asymptotic Confidence Interval of R

The asymptotic variance-covariance matrix of all parameters can be

approximated by the inverse of observed information matrix, and then derive

the asymptotic distribution of R . Based on the asymptotic distribution of R,

we obtain the asymptotic confidence interval of R.

The Fisher information matrix of ¢ =(6,,¢,,6,,,) is given as:

oL

oL

o°L

oL

E E E E
(6012) (6018051) (601802) (6016052)
o’L o’L o’L oL
E(a 60) E(—>) E(a 60) E(a )
O R e e
- 0L 0L oL o°L
E( ) E( ) E(—) E( )
00,06, 00,0a, 00, 00,0a,
oL oL oL oL
E(a ) E( ) E( ) E(—)
a,00, oa,0q oa,00, oa,
[11 [12 [13 [14
[21 [22 [23 [24
=11y Iy Iy Iy |,
[41 [42 [43 [44
(2.14)
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where:

Ly =15, =01, =1y =0, (2.15)

lyy =13 =051y =1, =0, (2.16)
n & x°

==y

g2 ;(al +0,x,)* 2.17)

i 1 n
[22 = Z - M
T +0x,)" (o +1)° (2.18)
m ! y ?

Ly=——5-) : ,

Y0 Sa,t+6,)) (2.19)

i 1 m
Ly = Z - ’
(e, +0,9) (ay +1)° (2.20)
n X.
Ly=1y=>—"—0,
e ;(al +6,x,)’ 2.21)
and
m Y
Iy =14 = _Z - :
7 (0 +6,,) (2.22)

Using the central limit theorem,we obtain the following theorem :

Theorem 2.1: As n — o, m — oo; then

~ ~ d _
(@, =0)Nn(é, —a)Nm(, - 0,).Nm(é, - ;) > N(O.I7(¢)).
d
Where — means converge in distribution, and / _1((/_5) is the inverse of the
Fisher information matrix /(¢).
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In order to establish the asymptotic normality of R, we first define:

OR OR OR OR ; .
d = N N ) =(d 9d 9d 9d s
() ((%,1 ba, "0, 6a2) (dy,d),d;,d,) 023)

where 7'is transpose operation, and
0,2a(a, +1)(6O,+60,)+a,0, +(a, +1)(6, +0,) +,0, + 0, +20,)
(a; +1)(a, +1)(6, +6,)’

dlz_

0 (e, (s +1)(6, +0,)7 + (6, +0,)(c,0, + 0, +6,) +20,0, )
(o +1)(a, +1)(6, +92)4

oy (a, +1)(6, +0,)” +(01+0,)(,0, +a,0, +6,)+ 26,6,

(a, +1)(ex, +1)(6, +6,)° (2.24)

0,(0t, (ct, +1)(6, +6,) + (6, + 0,)(c,0, + 2,6, + 0,) + 20,6, )
(a, + 1)2(052 +1)(6, + 02)3

6, ((az +1)(6,+6,)* +6,(6, + 02)) (2.25)
(a; +1)(a, +1)(6, + 02)3 ,

d, =

30, (0t, (s +1)(0, +0,)% + (6, +0,)(@,0, +,0, +0,) +26,0,)
(a; +1)(a, +1)(6, +92)4

d, =

_0,Qay(ay +1)(6, +6,) + (6, + 6,) + a6, + 1,0, +36?)
(a +1)(@, +1)(6, +6,)’ (2.26)

and
0,(0t, (ct, +1)(6, +6,) + (6, + 0,)(c,0, + 2,6, + 0,) + 20,6, )
(a, +1)(er, +1)*(6, +6,)’

6, (al (0, +6,)° +6,(6,+ 02)) (2.27)
(a; +1)(a, +1)(6, + 02)3 .

d,=
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Hence; using Theorem 2.1, the asymptotic distribution of Ié(the MLE
of R)is defined as:

Jnvm(@R-R)ySN(.B), (2.28)
where
B=Var(R)=d"($)I"'($)d(p). (2.29)

Therefore, using Eq.(2.29), an asymptotic 100(1—-y)% confidence

interval for R can be obtained as:

R+Z B,

2

where Z, is the upper % precentile of the standard normal distribution.

2

2.6 Bayesian Estimation of R

In this section, we provide the Bayes estimate of Rwhere 0,,0,,0,,,
are unknown parameters and all of these parameters having independent

gamma prior distributions as following:

a
1
bl

1 b0
I'a,
b, " 1 —by0
7(0,) = = Qza2 e 272,
I'a,
Ll3 b
3 a,-1 —bha
my) = ey le
as
and
b,” _
_ Y4 ag-1 _—bya
(a,) = - e 42
ay
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The joint posterior pdf is defined as:

g(91 ,92,061 9a2/data) =
L(x,y/6,,0,,a,,a,)7(0)(0,)r (o)) 7(,) .
[0 T L e, 9/6,65,00,0)m(6) 7 (0 )@ ) (0, d6,d Oy d v d ey

(2.30)
Then

n —0 Z

6,
g(019029a19a2/data)oc(a1+1) (a2+1) H( 1+HX)H(052+02)’J)€ =

9 Zvj

]:1 01611 _le_blel 02612 —le_bzez a1a3 —le—b3a1 a2a4 —1e—b4a2 '

2.31)

xXe

2.6.1 Bayes estimators under Symmetric and Asymmetric loss functions:

The Bayes estimate of reliability R depending also on the loss function.
We discussed before, in the previous chapter, three different loss function;
squared error, linex, and general entropy loss functions. The squared error
loss function is considered as symmetric loss function, where the linex , and
the general entropy loss functions are asymmetric loss functions. In this
section we proposed the bayesian estimation of Rusing these three loss

functions such that :

-The Bayes estimate of Runder the Se, which is the posterior mean of

R, is given by:

Rse = | I, . [ R 2(6,,6,,0,,a,/data)d6,d6,dadar,. 2.32)

-The Bayes estimate of R under the Lx, is given by:
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™ —1 00 (#00 00 (*00 —c
Ry =—nl [ ][ e 26,.6,.00,0,/data)d6,d0,dadar, ),

(2.33)
where ¢ is constant,c > 0, see Zellner (1986).
-The Bayes estimate of R under the Ge, is given by:
A _ 00 (FO0 (OO0 (0O —q ~l/g
Rae=1f, J, I, 7 800, 0data)dOdO,donda T, ) o)

where ¢ is constant, g > 0, see Calabria and Pulcini (1994).

These integrals are very complicated to computed analytically, so two
different approaches can be used to approximate these integrals, namely,
Metropolis-Hastings technique and Importance Sampling technique.

2.6.2 Bayes estimate of R using Metropolis-Hastings technique (MH)

As we mentioned before that MH was developed by Metropolis et
al.(1953), and Hastings (1970). The joint posterior density function of
0,,0,,a,, and «, is given in Eq. (2.31). It is easily seen that the marginal

density functions of 6,,6,,a,, and a, are, respectively:

7,(0,/data) « Gamma{n +a,,b + Zx,- j,

i=1 (2.35)

7, (0,/data) o Gamma{m +a,,b, + Zyj ),
/A (2.36)

0‘1513_16_})3061 H(Oﬁ +0,x;)

5 (a,/0,,data) o« = . ,
(a, +1) (2.37)
and
0‘2514_16_[)4012 H(az +6,y,;)

74 (0,/6,, data) o /! .(2.38)

(a, +1)"
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Therefore, easily samples of 6, and 6, can be generated by using
Gamma distribution as shown in Egs. (2.35) and (2.36) respectively.
However, the posterior distribution of «;, &, cannot be generated from a
well known distributions. The MH algorithm, can be used to solve this
problem, as shown in the following algorithm.

« Stepl: Start with initial value of @, ,a, such that o,” = ¢,, and
a,” =a,.

» Step2: Seti=1.

« Step3: Generate 0," from 7,(0,/data).

« Step4: Generate 0, from 7, (0,/data).

« Step5: Generate o, from 7,(a,/6,,data) using the MH

algorithm with the proposal distribution ¢, as following:
- Generate o 1(*) from the proposal distribution
g, = N(a," " Var(a,")).
- Calculate the acceptance probability

7y(e," 16" data)
“7y(e, 6 data)

-Generate U from U(0,1).
I U < (e, ,a,"), accept the proposal distribution and set

@ _ , (

a, =0 ") , otherwise set al(i) _ 051([_1).

« Step6: Generate o, from 7, (at,/0,,data) using the MH
algorithm with the proposal distribution ¢, as following:

- Generate «o 2(*) from the proposal distribution
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g, =N(a," " Var(@," ™).
- Calculate the acceptance probability

7y(," 6, data)
(" 16," data)”

ry(a," " ") = Min[1,

- Generate U from U(0,1).

- IfU <ry(a,'™",a,"), accept the proposal distribution and set

@ otherwise set ar,"” = a," ™.

o, =a,
* Step7: Compute R" at (91([),92([),alm,azm) using Eq.(2.5).
* Step8: Seti=i+1.
* Step9: Repeat steps from (3 —8) N times.
Then;

-An approximate Bayes estimate of R under Seloss function is given as:

1 ul -
Z R(l).

RMH, =
¥ N-M A7 (2.39)

-An approximate Bayes estimate of R under Lx loss function is given as:

. 1 1 WG]
RMH, . =—1log Z e .
¢ N-M Sy

(2.40)

-An approximate Bayes estimate of R under Ge loss function is given as:

N —-1/q
1 Z(R“))‘q} ,
N-M A7 (2.41)

where M is the burn-in samples, N is the MCMC samples.

RMH, = {

2.6.3 Bayes estimate of R using Importance Sampling technique (IS)

Importance Sampling Technique has suggested by Chen and

Shao(1999). In statistics, importance sampling is the name for the general
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technique of determining the properties of a distribution by drawing samples
from another distribution. The focus of importance sampling here is to
determine as easily and accurately as possible the properties of the posterior

from a representative sample from the second distribution.
Using Importance Sampling Technique, Eq.(2.31) can be written as

g(6,,0,,a,,a,/data) < g,(6,/data)g,(0,/data)g,(a,/data)
x g, (o, /data)h(6,,0,,0,,a,/data).  (2-42)

where:

g,(0,/data) c Gamma(n + a,,b, + le.), (2.43)

i=1

g,(0,/data) c Gamma(m + a,,b, + Zyj),

= (2.44)
g,(a,/data) oc Gamma(a,,b,), (2.45)
g,(a,/data) o« Gamma(a,,b,), (2.46)

and

H(al +6x;) H(az + ezyj)
h(6,,0,,0,,a,/data) = =1 j=1

(@+D)" (e +1)" (247
As shown, all the above functions from g,(60,/data) to g,(a,/data)

follow gamma distributions with different parameters, so it is quite simple to

generate QLD parameters from them. Assuming that a,,a,,---,a, and
b.,b,,---,b, are known, and assuming initial values for 6,,0,,a,,c,. we can

use the following Importance Sampling Algorithm:

* Stepl: Generate 0,, from g,(60,/data).

* Step2: Generate 0,, from g,(0,/data).
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* Step3: Generate a,; from g,(a,/data).
* Step4: Generate a,, from g,(a,/data).
* Step5: Repeat steps from 1 to 4, N times to obtain
(011,051,011,051)+ 5 (01,05, , Oy ).
Then

-An approximate Bayes estimate of Runder Se loss function can be

obtained as

N
ZRi h(6,;,0,;,a;,ay;/data)
_ i=l

e

G .
h(6,,0,;,,a,;,a,/data

ZZ;, (0,0, 0,00 ) (2.48)

- An approximate Bayes estimate of R under Lxloss function can be

obtained as

N
[ 2e (6.0, /data)
s, = logl T | ]
2 h(6,,0,;, 0,05, /data)
i=1

(2.49)

-An approximate Bayes estimate of R under Ge loss function can be

obtained as:

N
> R h (0,0, 0, ay,/data)
RIS, ==L

]71/q

”

N

h(0,;,0,;,0,,a,,/data
; (0,05, 0, 0,,/data) (2.50)
where

R.=R(6,,,0,,,a,;,a,;). as defined in Eq.(2.5), for i=1,---,N..
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2.7 Numerical Study

In this section, we mainly present some simulation experiments to see
the performance of the mentioned methods for different sample sizes,
(n,m)=(10,10), (20,20), (30,30), (50,50), (70,70), (100,100) .We simulated
1000 complete samples from quasi Lindley distribution with the parameter
values; 6,=0.2,0,=1.5,0,=2,a,=0.8, with true reliability value is

0.87399.

We also compute the 95% confidence intervals of R based on the
observed Fisher information matrix. We compared the performances of the
MLE and the Bayes estimates in terms of mean squared errors (MSE’s).
Also two different techniques of Bayesian estimation (IS, MH) are compared
for different loss error functions. Bayesian estimation for different loss error

functions was proposed with different values of ¢,g such that;
¢ =-3 (Lx1), ¢, =5 (Ix2), q, = -3 (Gel), g, =5 (Ge2).

Bayesian estimation studied under the informative gamma priors. For
choosing suitable hyper-parameters, the experimenters can incorporate their
prior guess in terms of location and precision for the parameter of interest.
The gamma distribution for the priors has mean = a/b, and variance = a/b* .
We assume a small value of prior variance (0.01), and take the mean equal
to the true value of the parameter of interest. For each parameter prior we
solve the two equations of the mean and the variance, we obtain the

following values of hyper-parameters :
a, =4,a, =225,a, =400,a, =64, and
b, =20,b, =150, b, =200, b, =80.
We also computed the Bayes estimates based on 11000 samples and

discard the first 1000 values as burn-in. The maximum likelithood estimator

and asymptotic confidence intervals of R for different (n,m)are obtained in
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Table 2.1. Bayes estimates of R using different techniques under different

loss error functions are obtained in Table 2.2.

Table 2.1: Average estimate, (MSEs) for MLE, and average confidence length of the
simulated 95% confidence intervals of R . (all MSE values are multiplied by 10_3)

Sample size Averﬁsﬁ’g)imate CIL CIU | C.Llength
(10,10) 0.8661 0.734952 | 0.997237 | 0.262
(3.2129)
(20,20) 0.8782 0.7872 0.9692 0.182
(1.1262)
(30,30) 0.8748 0.7976 0.9521 0.155
(0.7609)
(50,50) 0.8758 0.8167 0.9371 0.120
(0.459333)
(70,70) 0.8752 0.8237 0.9266 0.103
(0.3349)
(100,100)|  0.8774 0.8349 0.9199 0.084
(0.1554)
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Table 2.2: Average estimates (mean squared error ) of R for different bayes estimators

under different error loss functions. (all MSE values are multiplied by 10_3)

Est. Importance Sampling MH Technique

(n,m) Se Lx1 Lx2 Gel Ge2 Se Lx1 Lx2 Gel Ge2

(10,10) | 0.8671 | 0.8686 | 0.8646 | 0.8683 |0.8635 | 0.8879 |0.8891 | 0.8858 | 0.8888 | 0.8849
(0.7516)] (0.7058) (0.8421)] (0.7134) (0.8934)(0.7611)(0.7748)(0.7459) (0.77) (0.7477)

(20,20) | 0.8706 | 0.8715 |0.8692 | 0.8713 |0.8686 | 0.8919 [ 0.8927 | 0.8908 | 0.8925 | 0.8904
(0.4769) (0.4611) (0.5075)| (0.4637) (0.5239)(0.6747) (0.692) [(0.6479)(0.6872){(0.6403 )

(30,30) | 0.8707 | 0.8714 |0.8697 | 0.8712 |0.8693 | 0.8916 | 0.8921|0.8907 | 0.8919 | 0.8904
(0.3591)[ (0.3491) (0.3784)] (0.3508) (0.3883)(0.5684)(0.5822)((0.5464)(0.5785){(0.5396)

(50,50) | 0.8717 | 0.8721 |0.8711 | 0.8719 |0.8708 | 0.8899 | 0.8903 | 0.8894 | 0.8902 | 0.8892
(0.2536)(0.24863)(0.2626)(0.24957)(0.2670)(0.4366)(0.4458)[(0.4216)(0.4434){(0.4167 )

(70,70 | 0.8734 | 0.8737 |0.8729 | 0.8737 |0.8729 | 0.8887 | 0.8890 | 0.8883 | 0.8888 | 0.8881
(0.2189| (0.217) [(0.2226)[(0.2173)|(0.2244){(0.3755)(0.3823)((0.3645)(0.3805)(0.3609)

(100,100)0.87525| 0.8754 | 0.8749 | 0.8754 | 0.8749 | 0.8859 | 0.8862 | 0.8856 | 0.8861 | 0.8854
(0.1384) (0.1387) | (0.138) | (0.1386) | (0.138) [(0.2432)(0.2477)(0.2359)(0.2465){(0.2334)

2.8 Real Data Analysis

In this section we present the analysis of real data, introduced by Singh
et al. (2014). The data represent the waiting times (in minutes) before
customer service of two banks A and B, respectively. The use of Lindley
distribution for the waiting times (bank A) data has been originally discussed
by Lindley (1958). Since then, many authors have suggested the data under
different set-up for Lindley distribution. We are interested in estimating the

stress-strength parameter R = P(Y < X) where X and Y denotes the customer
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service time in Bank A and B (Data set 1, 2) respectively. The data sets are

presented below:

Data set 1: X(n =100)

0.8,08,13,15,1.8,1.9,1.9,2.1,2.6,2.7,2.9,3.1, 3.2,3.3,3.5,3.6,4.0, 4.1,
4.2,42,43,43,4.4,44,4.6,4.7,4.7,48,4.9,49,5.0,53,5.5,5.7,5.7,
6.1,6.2,6.2,6.2,63,6.7,69,7.1,7.1,7.1,7.1, 74, 7.6, 7.7, 8.0, 8.2, 8.6,
8.6, 8.6, 8.8, 8.8, 8.9,89,9.5,9.6,9.7,9.8, 10.7, 109, 11.0, 11.0, 11.1, 11.2,
11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1,
15.4, 154, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4,
21.9,23.0,27.0,31.6, 33.1, 38.5.

Data set 2: Y (m = 60)

0.1, 0.2, 0.3, 0.7, 09, 1.1, 1.2, 1.8, 1.9, 2.0, 2.2, 2.3, 2.3, 2.3, 2.5, 2.6, 2.7,
2.7,29,3.1,3.1,3.2,34,3.4,35,39,4.0,42,45,4.7,53,5.6,5.6, 6.2,
6.3, 6.6, 6.8, 7.3, 7.5, 7.7, 7.7, 8.0, 8.0, 8.5, 8.5, 8.7, 9.5, 10.7, 10.9, 11.0,
12.1,12.3, 12.8, 12.9, 13.2, 13.7, 14.5, 16.0, 16.5, 28.0.

First,we checked the suitability of the considered real data setsto the QLD.Therefore we
distribution. The fitting summary has been presented in Table 2.3, which
indicates that the QLD fits well to data Set 1 and data Set 2.

Table 2.3: P-value of different goodness-of-fit tests for data set 1, 2.

Test K-S A-D C-v
data set 1. 0.0654 0.0217 0.0501
data set 2. 0.9287 0.965 0.9310

Based on the MLEs 6,,4,,6,,d, the point estimate of R is 0.59 and
the 95% confidence interval of R is (0.25, 0.93). For real data sets, the

maximum likelithood and Bayes estimates of the stress-strength parameters
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and reliability are summarized in Table 2.4.

Table 2.4: The MLEs and Bayes estimates of stress-strength parameters and reliability

R from real data sets

Est. 6, 6, a, a, R

MLE 0.1 0.27 84.09 0.41 0.59
Bayes;g 0.13 0.59 1.44 0.66 0.81
Bayes, 0.1 0.54 22.13 0.69 0.77

2.9 Conclusions

In this chapter, maximum likelihood and Bayesian estimation methods
for stress-strength reliability R were discussed, when X and Y both follow a
QLD with different parameters. We obtained the 95% confidence intervals
of R based on the observed Fisher information matrix. We proposed the
Bayesian estimation based on independent gamma priors under different
error loss functions(Se, Lx, and Ge). we suggested the IS and MH
techniques to generate samples from the posterior distributions and then
compute the Bayes estimates. Simulation study has been introduced to

investigate the performance and compare among all mentioned methods.

Therefore, from the results presented earlier in Tables 2.1 and 2.2 , we
observed that:

* The performance of the Bayes estimators is better than maximum

likelihood for all different sample sizes.

* Mean squared error(MSE’s) for all estimation methods decrease as

sample size increase.

 As sample size increased, the asymptotic confidence intervals for R are
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improving, and thier length decreased. That means the estimated reliability

becomes in the most accurate interval.

* Maximum likelihood results are improving and become closer to

Bayesian results as sample size increased.

* For Bayes estimators, IS technique gives less MSE’s values, so it is
better than MH technique for the same priors values, and the same number

of generated samples.

* Ge, and Lx loss functions gave less MSE’s at specified values of ¢, g .

As shown above Lx2,Ge2 acheived the best results for MH, but for IS

technique Lx1,Gel are the best estimators .

A real data analysis has been performed for illustrative purposes.
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CHAPTER 3
Estimation of Stress-Strength Reliability for Exponentiated

Generalized Inverse Weibull Distribution

3.1 Introduction

One of the most widely used lifetime distributions in reliability
analysis is the Inverse Weibull distribution (IW). It can be used to determine
the maintenance periods of reliability centered maintenance activities. It can
also be used to model a variety of failure characteristics such as infant
mortality, useful life and wear- out periods and applications in medicine,
reliability and ecology. Keller et al.(1982) discussed the use of the IW
distribution as a suitable model to describe the degeneration phenomena of
mechanical components such as the dynamic components (pistons,
crankshaft, etc.) of diesel engines. Nelson (1982) provided a good fit to
several data such as the times to breakdown of an insulating fluid using the
IW distribution, subject to the action of constant tension. Calabria and

Pulcini (1994) suggested the IW distribution for Bayes 2-sample prediction.

The IW distribution has a cumulative distribution function (CDF):

Vix)=e * ,x>0,4,60>0, (3.1)

and a probability density function (pdf):
1.6
w(x) = 0% e (3.2)
Researchers always seeking for developing new and more flexible
distributions. As a result, many new distributions of (IW) have been developed
and studied. Cordeiro et al. (2013) proposed a new class of distributions that
extend the exponentiated type distributions and they obtained some of its

structural properties. Given a continuous CDF V(x) , they defined the
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Exponentiated Generalized (EG) class of distributions by:
F(x)=[1-(1-V(x)"1", (3.3)

where >0 and p>0 are two additional shape parameters. The

probability density function (pdf) of this new class has the form:

S(x) = afv)[ 1=V (01" [1=1-V(x)* 1", (3.4)

This class of distributions extends a various exponentiated type
distributions. The EG family of densities (3.4) allows for greater exibility of
its tails and can be widely applied in many areas of engineering and biology.
Note that even if v(x) is a symmetric distribution, the distribution f(x) will

not be a symmetric distribution. The two extra parameters o, can control

the new distribution properties.

This chapter discussed the stress-strength reliability model
R=Pr(Y<X) when X and Y have an Exponentiated Generalized Inverse
Weibull (EGIW) distribution with different parameters. The problem of
stress-strength reliability is studied to obtain the reliability function of the
parameters of EGIW distribution. Reliability for multi-component stress-
strength model for EGIW distribution is also studied. Maximum likelihood
estimation for stress-strength reliability of underlying distribution is
performed. Bayesian estimator of R is obtained using importance sampling
technique. A simulation study to investigate and compare the performance of
each method of estimation is performed. Finally analysis of a real data set

has also been presented for illustrative purposes.

3.2 The Exponentiated Generalized Inverse Weibull Distribution
(EGIW)

The Exponentiated Generalized Inverse Weibull Distribution (EGIW)
was introduced by Flbatal and Muhammed(2014) as extension of

exponentiated generalized family. They had provided a comprehensive study
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for this distribution, they derive the moment generating function and the "
moment thus generalizing some results in the literature. Also , Expressions
for the density, moment generating function and »” moment of the order

statistics are obtained in their paper.

The EGIW distribution has a pdf f(x) and CDF F(x):

fx) = aﬁm@x*“e’(?)@ e ppogoe ¥, (3.5)
Feo=[1-(1-¢ )P, (3.6)

where
x>0,4,0,a,p > 0.

Figures 3.1 and 3.2 illustrate pdf and CDF of (EGIW ) distribution for

selected values of the parameters.

M " "

=

----- EGIW[1.2, 2 0.8 1)
EGIW([2, 0.8, 2.3, 0.5}

----- - EGIW[1.3, 0.9, 2, 0.8)
-]

Figure 3.1: Pdf of the EGIW distribution for some parameter values «, 3,4, and 6
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psel
] : -]
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I & - AT EGIW(1.2, 2, 0.8, 1)
ozl ;' ﬂ.*" EGIW(3, 0.8, 2.3, 0.9)
I : = - EGIW[1.2, 0.8, 3, 0.8)
R
B 1 2 mo = = S m

Figure 3.2: CDF of the EGIW distribution for some parameter values «, 3,4, and 6

The survival and hazard (failure) rate functions of the (EGIW)
distribution are given respectively by:

s

S(x)=1-[1-(1—e * )*7’, (3.7)
and
Ao Ay N
0&9 -0-1 X 1— X a-1 1—(1- X aqp-1
h(x)zlfl(;()x):aﬁ x e [1-e ]i [1-(1-e )] (3.8)

- 45
I-[1-(1-e * )]
Figures 3.3 and 3.4 illustrate survival and hazard (failure) rate functions of

EGIW distribution for selected values of the parameters.
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----- EGIW[1.2, 2, 0.8 1)
A EGIW[3, 0.8 23, 0.8)

1 b = e - EGIW[1.3, 0.9, 3, 0.8)

Figure 3.3: The survival function of the EGIW distribution for some parameter values

a,B,A, and O

----- EGT1.2, 2 0.8 1)
EGIW([3, 0.8, 2.3, 0.9}
----- - EGIW(1.3, 0.9, 3, 0.8)

""""
'''''

Figure 3.4: The hazard rate function of the EGIW distribution for some parameter values

a,B,A, and O

The EGIW distribution is very flexible model that approaches to

different distributions when its parameters are changed. Its flexibility is

explained in the following, if X is a random variable with pdf in Eq.(3.5),

then we have the following special cases:
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e If o =p=1, then Eq.(3.5) reduces to the inverse weibull distribution.

o If a=1, then we get the exponentiated (generalized) inverse weibull
distribution.

e If =1, then we get the exponentiated generalized inverse exponential
distribution.

e If o =p=0=1, then we get the inverse exponential distribution.

3.3Expansions for The ProbabilityDensity and Cumulative Distribution

Functions

In this section, we present a new representations for the pdf and the
CDF of (EGIW). Equations (3.5) and (3.6) are straightforward to compute
using any software with algebraic facilities, but the integration for get the
reliability will be very difficult using these formula. So the mathematical

relation given below will be useful in next sections.

If b is a positive real non integer and | z [< 1, we have the power series

expansion

[1-z)"" = i(—l)f["._l}f,
=0 J

(b—lj: T'(b)
J NG = )
Applying this in Egs.(3.5) and (3.6), and using fractional binomial

theorem (See Chan et al. (2006)), we have:

f(x) = afg(N)[1-G)* 1= (1-Gx)“ 1"

where

w0 . -1 o
= afg(x)[1-Gx)]"" Y (1) (ﬁ . ][1 - G()]™

J1=0 J1
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1 a(j+1)-1
—aﬁg(x)Z( 1)“@ ][I—Gm] Vb

/=0

N&, o (al +1)-1 ;
—aﬁg(X)Z( I)J{ﬁ] ]Z(—l)’2 (a(‘] j : ][G(X)]2

/=0 J=0

+J 1 +1D-1 J
~afy Z( Y Z)Lﬂ ] ][“(" = ]g(x)[G(x)]z

J1=0/,=0 J2

[l o — / — _& —
T o) LU PR
Ji

Jjy=0j,=0 J2
= A% x 0! i i (_1)(j1+j2)(ﬁ — 1](05(]1 7%1) — 1] exp_(jfl)(%)g.
Jjy=0j,=0 J1 J2
(3.9
Likelly for F(x),

F(x)=[1-(1-G(X)*])

- i(—l)f{f ][1—G<x)]“f3

= i(—l)’{] ] Z( 1)’4( ][G(x)]”

J4=0

-y Z( 1)“”‘“[ ][ ]G( )T

7370 j4=0

- Z Z( 1)(J3+]4)(ﬁ](06]3] Xp_j4(%)9,

7370 j4=0

(3.10)

(%)
where g(x)=01x"%"e * |, G(x)=e * .



3.4 Stress-Strength Reliability Form

Suppose we have two independent random variables X (represents the
strength of some component) and Y (represents the stress applied to the
component), with pdf f(x)and w(y),respectively. Let X : EGIW(a,, B,,4,0)

and Y: EGIW(a,,p,,,0).

Then, the stress-strength reliability function is given by:
R=Pr(Y <X)
=[] feow(y) dyds.
=" fxw.(y) d
fy () dx G.11)
Using Egs.(3.9) and (3.10) we have the following:

[l — / — (7 &9
[ pars e § 5 caprmnon(B[€0 1) oot

[c'e] 0 . . )LQ
a —Jjg (=)
DI
j3=0 j,=0 \J3 J\J4

—a B i i i i(_l)(jl+j2+j3+j4)(ﬁ_1](05(]1 +1)_1] (ﬁz](a2j3]

Jy=0j,=0,/3=0 j4=0 N1 J2 J3 )\ J4

. 1.0
o0 g1 —UptigtH(=)
X.[o 02°x% e * dx.

= o f i i i i (_1)(f1+jz+j3+j4)(ﬁ —1](05(]'1 +1)_1]

J1=0j5=0j3=0j,=0 Ji J2

X(ﬁz](“zh] 1
J3 )\ s (]'2+]'4+1).

(3.12)
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Note that when the exponents in Egs. (3.5) and (3.6) are integers, the
expansions in Egs.(3.9), (3.10) and (3.12) become finite and this is a special
case from fractional binomial theorem.

3.5 Reliability for Multi-Component Stress-Strength Model

The reliability for a multi-component stress-strength model has
developed by Bhattacharya and Johnson (1974). Let the random samples Y,

ofYand F{x)be the common continuous distribution function of
X, Xy, -~ X,. Suppose that a system, with £ identical components functions
if 5, (1 £ s < k), or more of the components simultaneously operate.

In this operating environment, the system is subjected to a stress Y
which is a random variable with distribution function G(.).The strengths of

the components, that is the minimum stress to cause failure, are independent

and identically distributed random variables with distribution function F'(.).

The system reliability, which is the probability that the system does not fail,
is the function R given by:

R, , = Prlatleast s of the (X}, X,,--, X, ) exceed Y]
= Z(l. ] [ = FONTF ()1 dG(p).
(3.13)

From Egs. (3.5) and (3.6), The reliability for multi-component stress-
strength of EGIW distribution is:

k _(&)9 ﬂl i _(&)0 ﬂl
[_]rﬁ—[p(l—e y )“1] [1—(1—e y )“1]
i=s l 0

k—i

k
Rs,k - Z

N ay-l 2.0 By
o o0 G ) 7 o
xo, 3,0y " e l-e l1-(1-e ) dy.

(3.14)
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1.6
-
Assume that t=(1—-e » ), we obtain:

k (k) o a Vi T . P Ge=i)
RS’,{:Z(i]IO[I—(I—t l)ﬁ} [l—z 1]ﬁ
0 91_(&)905—1 a, P21
XLL,00y " e T t? [l—t Z]ﬁ dy.

_ ﬁ(kj > (;](—m ml_ o Jraris

1.6
-(=) _ -1
xa, 3,000y e 7 "2 1[1 — 12 }HZ dy.

ki PUtk=DBy 10N (k=i ,—1 J1+jo+J
S s

i=sj1=0  j,=0 j3=0\!/\J1 J2 J3
X
© —0-1_ 'y Laqjptanjstas-1
X_[()Qleyeeytlz 23t g,

ki PULHE=DB -1 ENC Wy +k—i , —1 JiHin+i
0 e Oy

i=sj1=0  j,=0 j3=0\!/\JI J2 J3

y J‘;taljz rap (3=l g

B 1 Y

i=s ;=0 j,=0 j3=0 \!J\J1 J2 J3

X(_l)j1+j2+j3 ' azﬁz ' )
a1 j, + o, (j3+1)

(3.15)

3.6 Maximum Likelihood Estimation for R

In this section, the maximum likelihood estimator (MLE) of R is
is random sample from EGIW (o, B;,1,0)

,and 1,Y,,---,Y is random sample from EGIW(«,,,,A,0). Now, to get

derived. Suppose X, X,, -, X

n
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the MLE of R we first get the maximum likelihood estimates for the
parameters of X and Y; QZ(al,az,ﬁl,ﬂz,lﬁ). Since X, Yare

independent random variables, then the jointly-likelihood function of X and
Yis:

LG yid) =[£G [ w0

4.6 4.6 4.6

L 0 0-1 _(;) _(;) o —1 _(;) ay 111
ZHalﬁIQA x," e 7t [1—e TV [1I-(1—e 77 )T
i=0

S M (1Y
<[ o020y, e 7 [1—e 7 12 [1-(1—e )22
=0

4.6 4.6

nooo N 1 - 1
:alnazmﬁlnﬁzmefﬁm/l(;ﬁm)e XHXZ' 0 1[1_e X; ]al [1—(1—8 X; )0‘1 ]ﬁl
i=0
n 10 m 1o
202 (10 NS
. 1 . . — . —
xe T T e T 12T I (1-e )22

(3.16)

The logarithm of the joint likelihood function may be written as:

Ux,y,9) =log L(x,y;9)
=nloga, +nlog B, + mloga, + mlog B, +(n+m)logf + O0(n+ m)logA

—@+ 1Y logx, +Ylogy,1- (! - S (A
i=1 j=1 i=1 X; j=1 YV

(20 S

Y8 -DY logl1—(1—e )1+ (B, ~DY logl1-(1—¢ 1 )],
i=1 j=1

(3.17)
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The MLE can be obtained by differentiating Eq. (3.17)with respect to

a, B, B,.a,, 4,0, and solving the following equations:

4.6

o n TR
—=—+ > log[l-(1-e 7 )']=0, (3.18)
op B ;
(% m L Vi a
——=—+>log[l-(1-e 7 )™]=0, (3.19)
op, P, =1
N &Y 1 -4
o n RS " _(1—e " )T xlog(l—e 7 )
—=—+>logl-e 7 ]+(B -1 =0,
aal al 121: g[ ] (ﬂl )IZI: _(xi)e .
[I-(1-e 7 )]
(3.20)
2 Neal ()0
o m & < n_(l—e 7 Y2 xlog(l—e 7 )
Z =D N logl—e 1+ (B, DY e =0,
8062 a, j=1 j=1 —(;)
[1-(1-e 7/ )7]
(3.21)

e
n

ol Om+m) &, 1 A oq &1 004 g X,
—= —20()=)" = 20(—)(—)" +6(a, —1) —
oA A 121: (xi X JZI: j 1 ’Zl: _(xi)g
[1-e 7 ]
RN I -’
e e
+0(a, _I)Z ;/(i)‘g./ +0a, (B, _I)Z iﬁ(i).g
Tl S l=(-e )"
4.0
-(—)
e (1t
& Yi YV
+ 00, (B, ~1)Y. E (3.22)
j=1 B
[1-(1—e 7/ )?]



and

ae £_UEm) s mylog — Zlogx —Zlogy] Z( _) log( )
_(i)g
e (x )? log(“)
—Z(;) 1og<—)+<a1—1)2 e
J J (l_e x; )
G
w P 4y log ) e % e (Myl0gh
+(a2—1)Ze u+ozl(ﬂ1—1)z S
—( ) —(;) o
(1—e 7 ) [1-(1-e 7 )"]

(3.23)

Obtaining a closed form expressions for the MLEs of the unknown
parameters o,,Q,, 3, ,,A4,0 are not possible, so these nonlinear equations

are solved numerically using iterative process as Newton Raphson to get
dla&zaﬂlaﬂzalae‘
Then the MLE of Rcan be obtained using the invariance property of the

maximum likelihood estimator from Eq.(3.12) as following:
o (j, +1)-1 '
ReGf Y>> D) [ﬁl I 4y +1)- ][@IO%] !
71707570570 j;=0 Ji J2 J3 (Ur+J4 +1)
(3.24)

Similarly, We can calculate the MLE of reliability for multi-component

stress-strength model from Eq(3.15)by:

ki RGHDB 3 _ o 5 0
ZZ Z Z( )(] )[ﬁl([l_i_k )][ﬁz 1](_1)11+12+J3 _ azﬂz

=sj1=0  j;=0 jz=0 J2 J3 aj, +a,(j; +1)

(3.25)
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3.7 Bayesian Estimation of R

In this section we provide the Bayes estimate of R where

¢ =(a,,,p,,B,,4,0) are unknown parameters and all of these parameters

having independent gamma prior distribution as following:

9
r(2) =2 gt

I'a,

b

b, "2 -
Ia,
3a3
w(a,) = —=—a
as

as -1 e —b30!1

b

b, -
4 ay=1 =04
o, 4 e ,

r(a,)=
ay
b*s .| _
7(B)=—=—p," e "N,
Ias
and
b6 . _
n(B,) = ° B, e,
I'a,

The joint posterior pdf is defined as
g(¢da L(x,yley, B1,4,0,05, b )m(A)m(O)re(oq ) (e )m(B)( )
F [T T T Lesyten. 26,00, B)r(Aym(@)(on)m(an)n( B )n( By
Where L(x,y/ay,p,,A,0,a,,B,) is defined in Eq.(3.16), then the joint

posterior function can be written as :
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4.6 _(19

n =
g( Q/data) o alnazmﬁlnﬁ2m0n+m;{’(n+M)9 Hxi—e—l(l_ e i )al —1[1_(1_ e i )al ]ﬂl -1
i=1

n m
1.0 1.0
2. ‘Z(yj) n KL -
e ™ T X[y e )T I=(1=e )]
j=1

X

[ll -1 _bll llz -1 —b29 ll3 -1 _b3a1 ll4 -1 _b4a2 as -1 _bsﬂl a6 -1 _b6ﬂ2
xAl e 102 e 2a3 e "la,* e B3 e 2TIB 0 e .
(3.26)

Therefore, the Bayes estimate of reliability, say R, under the squared

error loss function isgiven by:
R, = j:R g( pldata)d . (3.27)

It is impossible to compute the bayes estimate of R analytically using
Eq.(3.27), therefore instead, we propose to approximate it by a Monto Carlo
method to obtain this integration. Importance sampling technique was used

for solving this problem.

3.7.1 Bayes estimate of R using Importance Sampling technique

It 1s so difficult to generate samples directly from the posterior
function in Eq.(3.26), so we divided it to individuals function which easy to

generate sample from them.
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So we can rewrite Eq.(3.26)as following:

g(Pldata) = g\(0data)g,(V/0,data)g,(o/A,0,data)g,(a,/1,0,data)
xgs(B/data)g.(B,/data)h(/data)

where
g,(fdata) « Gammc{b2 + Zlnxl- + Zlnyj ,a, +n+ m},
= /A (3.28)
g,(A/0,data) o Gamma(bl,a1 +(n+ m)@), (3.29)
" <Ay
g5(a,/A,0,data) o« Gamma| by — Zln(l —e " )a;+n|,
- (3.30)
. (2P
g,(a,/A,0,data) oc Gamma| b, — Zln(l —e ),a, +m |,
=1
' (3.31)
gs(B,/data) o« Gamma(bs,as + n), (3.32)
2 (B,/data) o« Gammal(bg,ag +m), (3.33)
and

n 1o m 10
DI

Wgdatgy=e = 7

X

)]a4+m

(3.34)
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It is clear that
g,(Odata), g,(A/0,data), g,(a,/A,0,data), g,(a,/A,0,data),

gs(pB,/data), and g, (B,/data) follow a gamma distribution, so it is quite

simple to generate samples from them. The following algorithm will be used

assuming that q,,---,a, and b,,---,b, are known apriori, and assuming

initial values for 4,0,a,,a,, B, B, .
Importance Sampling Algorithm:
* Stepl: Generate 0, from g,(./data).
* Step2: Generate A, from g,(./0,data).
* Step3: Generate ¢, from g,(./A,0,data), a,, from g,(./A,0,data).
* Step4: Generate 3, from g.(./data), 3,, from g (./data).
* Step5: Repeat this procedure N times to obtain

(01,241,011, Bi1s Bar)s 5 (On s Ay s @y s Qs By s Baw )-

* Step6: An approximate Bayes estimate of R under a squared error loss

function can be obtained as

N
;ZRih(ei >0y 05 Py > Poyldata)
> i=1

B

b

N
]bzh(ei A0y, Qs By, Ba/data)

i=1
where

R, = R(0;, A, a5, Byys Boi)s
as defined in Eq. (3.12) for i =1,---,N .

Using the same technique, We can obtained the bayesian estimation of

reliability for multi-component stress-strength model by replacing R by R, ,

given in Eq. (3.15).
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3.8 Numerical Study

In this section, we mainly present some simulation experiments to see
the behavior of the proposed methods for various sample sizes and for
parameter values o, =0.75,a, =1.5, ,=3.5, 8, =2.2, A =1.008,0 =0.61,
so that the true reliability value is 0.847751. We compared the performances

of the MLEs and the Bayes estimates with respect to the squared error loss

function in terms of biases and mean squares errors (MSEs).
We have taken sample sizes namely (n,m)= (5, 5), (10, 10), (20, 20),
(30, 30).

For bayesian estimation, we used importance sampling technique under
the informative gamma priors. For choosing a suitable hyper-parameters, the
experimenters can incorporate their prior guess in terms of location and

precision for the parameter of interest. The gamma distribution has

mean = a/b, and varience = a/b>. We assume a small value of prior varience
(0.005), and taken the mean equal to the parameter of interest. For each
parameter priors we solve the two equations of the mean and the varience,

we obtain the following values of hyper-parameters :
a, =201.6, a, =76.25, a, =107.14, a, = 500, a; = 2500, a, = 956.5.
and b, = 200,b, =125,b, =142.857,b, =333.333,b, =714.286,b, = 434.783

For the all mentioned sample sizes, we obtained the average estimate,
bias and the mean squared errors of the MLE and Bayesian estimation of the

stress-strength reliability R which given in Table (3.1).
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Table 3.1: Average estimate, Bias and MSE of R using different estimators.

Estimators MLE Bayesian

(n,m) R Bias MSE R Bias MSE

B

(5,9 0.90616 | 0.05841 | 0.01502 | 0.88337 | 0.0316 | 0.00425

(10,10) | 0.89713 | 0.04938 | 0.01116 | 0.87597 | 0.02822 | 0.00124

(20,20) | 0.89001 | 0.04226 | 0.00612 | 0.86825 | 0.0205 | 0.00096

(30,30) | 0.87338 | 0.02563 | 0.00379 | 0.86002 | 0.01227 | 0.0007

3.9 Real Data Analysis

In this section, we present a data analysis of the strength data
introduced by Badar and Priest (1982). The data stand for the strength data
measured in GPA, for single carbon fibers and impregnated 1000-carbon
fiber tows. Single fibers were tested under tension at gauge lengths of 1, 10,
20 and 50 mm. Impregnated tows of 1000 fibers were tested at gauge lengths
of 20, 50, 150 and 300 mm. For illustrative purpose, we consider the data
sets consisting the single fibers of 20 mm (Data Set 1) and 10 mm in gauge
lengths (Data Set 2), with sample sizes 69 and 63 respectively. Data sets are

provided below:

Data set 1:(strength measurements)

312, 314, .479, 552, .7, .803, .861, .865, .944, .958, .966, .997, 1.006,
1.021, 1.055, 1.063, 1.098, 1.14, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272,
1.274, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511,
1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684,
1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821, 1.848, 1.880, 1.954,
2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585.
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Data set 2:(stress measurements)

101, .332, .403, .428, .457, .550, .561, .596, .597, .645, .654, .674, .718,
122, 7725, 732, 775, 814, .816, .818 ,.824, .859, .875, .938, .940, 1.056,
1.117, 1.128, 1.137, 1.137, 1.177, 1.196, 1.230, 1.325, 1.339, 1.345, 1.420,
1.423, 1.435, 1.443, 1.464, 1.472, 1.494, 1.532, 1.546, 1.577, 1.608, 1.635,
1.693, 1.701, 1.737, 1.754, 1.762, 1.828, 2.052, 2.071, 2.086, 2.171, 2.224,
2.227,2.425,2.595, 3.2.

We fit the two data sets separately with the exponentiated generalized
inverse weibull distribution (EGIW). we provide the Kolmogorov-Smirnov
(K-S), Anderson-Darling(A-D) and Crameér-von Mises (C-V) goodness-of-
fit tests in Table(3.2). Obviously, the (EGIW) model fits well to Data Set 1
and Data Set 2.

The MLE and Bayesian estimates of R for the real data are provided in
Table (3.3).

Table 3.2: P-value of different goodness-of-fit tests for data set 1, 2.

K-S A-D C-v

dataset 1. | 0.231248 | 0.143961 | 0.152425

dataset 2. | 0.192997 | 0.126852 | 0.213019

Table 3.3: Maximum likelihood,Bayesian estimates of the parameters and R .

a, a, By B, A 0 R

MLE | 2.7192 | 1.9639 |4.4707 | 2.0057 | 0.9511 | 1.0789 |0.55826

Bayes | 1.1070 | 1.5513 |3.6196 | 2.1963 | 1.5344 | 1.06724 | 0.7493
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In case of multi-component stress-strength model, the maximum
likelihood and Bayes estimates of the stress-strength reliability based on the

real data sets, are presented in Table (3.4) for different values of (s, k).

Table 3.4: The Maximum likelihood and Bayesian estimates of RS5 P

R, MLE Bayes

(1,3) 0.73573 0.82293
(1,5) 0.83869 0.91084
(2,4) 0.54955 0.70667
(3,3) 0.16096 0.34609
(3.5) 0.42262 0.6608

3.10 Conclusions
In this chapter we presented two methods for estimating
R=Pr(Y <X) when X and Y both follow exponentiated generalized

inverse weibull distribution with different parameters. We investigated
Maximum likelthood and Bayesian estimation methods of R and their

performances are examined by simulation study.

We have computed the Bayes estimate of R based on the independent
gamma priors and using squared error loss function. Since the Bayes
estimate cannot be obtained in explicit form, we have used the importance

sampling technique to compute the Bayes estimate.
From the simulation results given earlier in Table 3.1, we observed that:

* For all the methods, as the sample size increases the biases and the mean

squared errors decrease.
* The performance of the Bayes estimators is better than maximum
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likelihood for all different sample sizes.

* Maximum likelihood results are improving and become closer to

Bayesian results as sample size increased.

Real data analysis has been performed for illustrative purposes. We
introduced the MLE, and Bayesian estimation of multi-component stress-
strength reliability using the real data study. From the results given in Table

3.4, we notice that, for fixed k, as sincreases then the value of R,

decreases, also for fixed s, as k increases then the value of R ; increases.
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FUTURE WORK

Study the stress-strength reliability estimation for another

distributions.

Study the stress-strength reliability estimation when the stress follow

a distribution and the strength follow another distribution.

Using another methods of estimation(Moment method, Bootstrap
confidence interval) and another types of loss functions, and

approximation method(Lindely Approximation) for Bayesian method.

Study the stress-strength reliability estimation based on censored

samples.
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