$$
\begin{aligned}
& \text { جامعة بنها كلية الهندسة بينها قسم الهندسة الكهربية }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مدرس بالقسم شوقي حامد عرفه }
\end{aligned}
$$

Benha University	Time: 3-hours
Benha Faculty of Engineering	Second Year 2013/2014
Control Engineering (E1236)	Elect.Eng.Dept.

Solve as much as you can questions in two pages

 Q1(20marks)
a- Write a mathematical model represents the physical systems shown in Fig.1, and Fig.2?
b- Find the unity feedback control system represents the system shown in Fig. 1 as $\mathrm{R}=1 \Omega, \mathrm{~L}=(1 / 6) \mathrm{H}, \mathrm{C}=(1 / 6) \mathrm{F}$ using block reduction method?
c- Write the most important features of good control system?
d- Write the most important advantages and disadvantages of the open loop and the closed loop control systems?

Fig. 1

Fig. 3
$\mathbf{0 2}$
(20 marks)
Consider a system shown in Fig. $3 \mathrm{H}(\mathrm{s})=1, \quad G(s)=\frac{K}{\mathrm{~S}(\mathrm{~S}+2)}$
a- Find the steady state static error coefficients?
b- Find the gain \mathbf{K} such that the steady state error $=0.02$?
c- Find and draw the unit step response as $\mathrm{K}=4$?
d - Find the frequency response and $\mathbf{M}_{\mathbf{r}}$ and $\omega_{\mathbf{r}}$ as $\mathrm{K}=4$ and $\mathrm{r}(\mathrm{t})=5 \sin \omega t$?
P.T.O

Q3
(25 marks)
Consider a system shown in Fig. 3
a- Prove that the gain margin $=\infty \mathbf{d b}$ at $\infty \mathbf{r a d} / \mathbf{s e c}$. and the phase margin= $\mathbf{5 1 . 8}$ degrees at $2.36 \mathrm{rad} / \mathrm{sec}$.?
b- Sketch the polar plot as $\mathrm{K}=9$?
c- Sketch the Bode plot as $K=9$?
d- Sketch the Nichols plot as $\mathrm{K}=9$?
e- Write short MATLAB program to solve a, b, c, and d ?

Q4
(10 marks)
Consider a system shown in Fig. 3
a- Sketch the complete root locus for positive values of \mathbf{K} ?
b- Using the root locus plot to find \mathbf{K} as a damping ratio $=\mathbf{0 . 7}$?
c- Write short MATLAB program to solve a ?

Answer
1- Write a mathematical model represents the physical systems shown in Fig. 1, and Fig.2?
The algebraic sum of all voltages around a closed loop in an electrical circuit at any given instant is zero

Newton's laws for mechanical systems:
$m a=\sum F=\mathbf{m} \ddot{X}=F-b \dot{X}+\boldsymbol{K} X, \quad \sum T=\mathrm{J} \ddot{\boldsymbol{\theta}}=\boldsymbol{T}-\boldsymbol{b} \dot{\boldsymbol{\theta}}-\boldsymbol{K} \boldsymbol{\theta}$
Where: $\quad \mathrm{m}=$ mass in Kg , $\mathrm{a}=$ acceleration in $\mathrm{m} / \mathrm{sec}^{2}$, $\mathrm{F}=$ force in newtons
b-Find the unity feedback control system represents the system shown in Fig. 1 as $\mathrm{R}=1 \Omega, \mathrm{~L}=(1 / 6) \mathrm{H}, \mathrm{C}=(1 / 6) \mathrm{F}$ using block reduction method?

$$
\begin{gathered}
\frac{E_{o}(s)}{E_{i}(s)}=\frac{G(s)}{1+\boldsymbol{G}(s) \boldsymbol{H}(s)}=\frac{\mathbf{3 6}}{\boldsymbol{S}^{2}+\mathbf{6 S}+\mathbf{3 6}} \\
\text { thenG }(s)=\frac{\mathbf{3 6}}{\boldsymbol{S}(\boldsymbol{S}+\mathbf{6})}, \mathrm{H}(\mathrm{~s})=1
\end{gathered}
$$

Figure 3-5
Block diagram of a closed-loop system.

$$
\frac{E_{o}(s)}{E_{i}(s)}=\frac{1}{L C s^{2}+R C s+1} \quad G(s)=\frac{1 / L C}{S(S+R / L)}=\frac{36}{S(S+6)}
$$

c -Write the most important features of good control system?
1-simple construction and operation \quad 2-fast response (speed) 3-less cost
4- large accuracy (less error)
5-stable
d-Write the most important advantages and disadvantages of the open loop and the closed loop control systems?

Open loop control system

Advantages of open loop	disadvantages of open loop
1-simple construction	1-disturbances cause errors
2- ease of maintenance	2-changes in calibration cause errors
3-less expensive	3-recalibration is necessary
4-no stability problem	
5-convenient when output is hard to measured or economically not feasible	

Closed loop control system

Disadvantages of closed loop	advantages of closed loop
1-complex construction	1-disturbances do not cause errors
2- stability may be a problem	2- has less errors
3-more expensive	3-recalibration is not necessary
	4-the ability to adjust the response

Consider a system shown in Fig. $3 \mathrm{H}(\mathrm{s})=1, \quad G(s)=\frac{\mathrm{K}}{\mathrm{S}(\mathrm{S}+2)}$
a- Find the steady state static error coefficients?

$$
K_{p}=\lim _{0} G(S)=\lim _{0} \frac{K}{S(S+2)}=\frac{K}{(0)(0+2)}=\infty
$$

$\mathrm{K}_{\mathrm{V}}=\lim _{0} \mathrm{SG}(\mathrm{S})=\lim _{0} \frac{\mathrm{~K}}{(\mathrm{~S}+2)}=\frac{\mathrm{K}}{(0+2)}=0.5 \mathrm{~K}$
$K_{a}=\lim _{0} S^{2} G(S)=\lim _{0} \frac{S K}{(S+2)}=0$
b- Find the gain \mathbf{K} such that the ramp steady state error $=0.02$?

$$
\mathrm{e}_{\mathrm{ss}}(\mathrm{t})=1 / \mathrm{K}_{\mathrm{v}}=\frac{1}{0.5 K}=0.02, K=100
$$

Routh test as $\mathrm{K}=100$, system is stable
c- Find and draw the unit step response as $K=4 ? H(s)=1, \quad G(s)=\frac{K}{S(S+2)}$
Step response of a second order system $R(S)=1 / s$
$\mathrm{C}(\mathbf{S})=$ closed loop $\mathrm{T} \cdot \mathrm{F}(\mathbf{S}) * \mathrm{R}(\mathbf{S})=\frac{\omega_{n}{ }^{2} R(S)}{S\left(S^{2}+2 \eta \omega_{n} S+\omega_{n}{ }^{2}\right)}=\frac{4}{S\left(S^{2}+2 S+4\right)}$
$=\frac{a}{S}+\frac{b s+d}{\left(S^{2}+2 S+4\right)}$ partial fraction , Type equation here.
$C(t)=$ inverse Laplace of the product of closed loop t.f. (S) and $R(S)=1 / s$ with zero initial conditions $\mathrm{C}(\mathrm{t})=\mathrm{L}^{-1}\left[(\mathrm{C}(\mathrm{S})]=\mathrm{L}^{-1}[\right.$ closed loop t.f. $(\mathrm{S}) * \mathrm{R}(\mathrm{S})]$ with zero initial conditions $]$

$$
\begin{aligned}
& \eta=0.5, \omega_{r} \\
& C(t)=1-\frac{e}{}
\end{aligned}
$$

$M_{p=} e^{-\frac{\eta \pi}{\sqrt{1-\eta^{2}}}}=0.163, t_{r}=\frac{\pi-\cos ^{-1} \eta}{\omega_{d}}=\frac{\pi-\frac{p i}{3}}{1.732}=1.21 \mathrm{sec}$,
$t_{p}=\frac{\pi}{\omega_{d}}=1.81 \mathrm{sec} ., t_{s}=4 T=\frac{4}{\eta \omega_{n}}=4 \mathrm{sec}$.

Step Response

d- Find the frequency response and $\mathbf{M}_{\mathbf{r}}$ and ω_{r} as $\mathrm{K}=4$ and $\mathrm{r}(\mathrm{t})=5 \sin \omega t$?

$$
\omega_{r}=\omega_{n} \sqrt{\mathbf{1}-\mathbf{2 \zeta ^ { 2 }}}=\mathbf{2} \sqrt{\mathbf{1 - 2 (0 . 5) ^ { 2 }}}=\frac{1.414 \mathrm{rad}}{\mathrm{sec}}
$$

$$
M_{r}=\frac{1}{2 \zeta \sqrt{1}}
$$

-Steps to find frequency Response:

1-the closed loop transfer function $=\mathbf{T}(\mathbf{s})=\mathbf{C}(\mathbf{S}) / \mathbf{R}(\mathbf{S})=$

$$
\mathrm{C}(\mathrm{~S}) / \mathrm{R}(\mathrm{~S})=\frac{\mathrm{G}(\mathrm{~s})}{1+G(S) H(S)}=\frac{\omega_{n}{ }^{2}}{S^{2}+2 \eta \omega_{n} S+\omega_{n}{ }^{2}}=\frac{4}{S^{2}+2 S+4}, \omega_{\mathrm{n}}=\frac{2 \mathrm{rad}}{\sec } \zeta=0.5
$$

2-the closed loop frequency transfer function $=$

$$
\begin{aligned}
& \mathbf{T}(\mathbf{j} \omega)=\mathbf{C}(\mathbf{j} \omega) / \mathbf{R}(\mathbf{j} \omega)=\frac{4}{(\mathrm{j} \omega)^{2}+2(\mathrm{j} \omega)+4}=\mathrm{M}\llcorner\Phi=\operatorname{Re}+\mathrm{j} \text { imag } \\
& \boldsymbol{M}=\frac{\mathbf{4}}{\sqrt{\left(\mathbf{4 - \omega ^ { 2 }) ^ { 2 } + \mathbf { 4 } \omega ^ { 2 }}\right.}}, \boldsymbol{\Phi = - \boldsymbol { \operatorname { t a n } } ^ { - \mathbf { 1 } } [\mathbf { 2 } \boldsymbol { \omega } / (\mathbf { 4 } - \boldsymbol { \omega } ^ { \mathbf { 2 } })]}
\end{aligned}
$$

3-As the input $=r(t)=5 \sin \omega t$ then the response $=C(t)=5 M \sin (\omega t+\Phi)$

$$
=\frac{20}{\sqrt{\left(4-\omega^{2}\right)^{2}+4 \omega^{2}}} \sin \left[\omega t-\tan ^{-1}\left[2 \omega /\left(4-\omega^{2}\right)\right]\right.
$$

Q3
(25 marks)
Consider a system shown in Fig. 3
a- Prove that the gain margin $=\infty \mathbf{d b}$ at $\propto \mathbf{r a d} / \mathbf{s e c}$. and the phase margin $=51.8$ degrees at $2.36 \mathrm{rad} / \mathrm{sec}$.?

$$
\mathbf{G}(\mathbf{j} \omega) \mathbf{H}(\mathbf{j} \omega)=\frac{9}{\mathbf{j} \omega[\mathrm{j} \omega+3)]}=\mathrm{Me}^{\mathrm{j} \Phi}=M\llcorner\Phi=\mathrm{Re}+\mathrm{j} \mathrm{imag}
$$

$$
\frac{9}{j \omega[(j \omega+3)]}=\frac{9}{-\omega^{2}+j 3 \omega}=\frac{9\left(-\omega^{2}-\mathrm{j} 3 \omega\right)}{\left(\omega^{4}+9 \omega^{2}\right)}=\frac{-9}{\left(\omega^{2}+9\right)}-\frac{27 \mathrm{j} \omega}{\left(\omega^{4}+9 \omega^{2}\right)}
$$

$$
\text { Real }=\frac{-9}{\left(\omega^{2}+9\right)} \approx-1
$$

$$
\left.M=\frac{9}{\omega \sqrt{9+\omega^{2}}} \quad, \Phi=-90-\tan ^{-1}(\omega / 3)\right]
$$

$$
\begin{aligned}
M_{\omega_{g}}= & \frac{9}{\omega_{\mathrm{g}} \sqrt{9+\omega_{\mathrm{g}}^{2}}}=1, \omega_{\mathrm{g}}=2.36 \mathrm{rad} / \mathrm{sec} \\
& M_{\omega_{\mathrm{p}}}=\frac{9}{\omega_{\mathrm{p}} \sqrt{9+\omega_{\mathrm{p}}^{2}}}=0 \quad \mathrm{G}_{\mathrm{m}}=20 \log (1 / 0)=\infty \mathrm{db}
\end{aligned}
$$

$$
\boldsymbol{\Phi}_{\boldsymbol{\omega}_{\mathbf{p}}}=-\boldsymbol{\operatorname { t a n }}^{-1}\left(\boldsymbol{\omega}_{\mathbf{p}}\right)-\boldsymbol{\operatorname { t a n }}^{-1}\left(\boldsymbol{\omega}_{\mathbf{p}} / \mathbf{3}\right)=-180 \mathrm{deg} . \boldsymbol{\omega}_{\mathbf{p}}=\frac{\infty \mathrm{rad}}{\sec } .
$$

$$
\left.\Phi_{\omega_{\mathrm{g}}}=-90-\tan ^{-1}\left(\omega_{\mathrm{g}} / 3\right)\right]=-90-38=-128 \mathrm{deg} .
$$

$$
\gamma_{m}=\angle \mathrm{G}\left(\mathrm{j} \omega_{g}\right) \mathrm{H}\left(\mathrm{j} \omega_{g}\right)+180 \text { deg. }=180-128=51.8 \text { deg. }
$$

$$
\text { open loop } \mathrm{TF}=\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\mathbf{G}(\mathbf{S}) \mathbf{H}(\mathbf{S})=\mathbf{9} /[\mathbf{S}(\mathbf{S}+\mathbf{3})]=9 /\left[\mathrm{S}^{2}+3 \mathrm{~S}+0\right]
$$

Find the table

$\boldsymbol{\omega}$	0	0.1	1	2.36	3	5	10	∞
Φ	-90	-92	-108.4	-128	-135	-149	-163.3	-180
M	∞	30	2.85	1	0.70	0.3	0.09	0
$20 \log \mathrm{M}$		29.50	9.1	0	-3.1	-10.21	-21.31	

Prog. $\gg n=[9] ; \quad d=\left[\begin{array}{lll}1 & 3 & 0\end{array}\right]$;
>> nyquist(n, d) >> margin(n, d) >> nichols(n, d)

Q4
(10 marks)
Consider a system shown in Fig. 3
b- Sketch the complete root locus for positive values of \mathbf{K} ?
c- Using the root locus plot to find \mathbf{K} as a damping ratio $=\mathbf{0 . 7}$?
d- Write short MATLAB program to solve a?
Root locus:
1-the root locus is symmetrical about the real axis in the S-plane
2-the open loop TF=G(s) $\mathrm{H}(\mathrm{s})=\mathbf{G}(\mathbf{S}) \mathbf{H}(\mathbf{S})=\mathbf{K} /[\mathbf{S}(\mathbf{S}+\mathbf{2 . 5})(\mathbf{S}+\mathbf{1 . 5})]=\mathrm{K} /\left[\mathrm{S}^{3}+4 \mathrm{~S}^{2}+3.75 \mathrm{~S}\right]$
3-the root locus starts at the pole and ends at the zero or infinity
4-number of root loci= $n=$ number of poles of the open loop $\mathrm{TF}=3$ at $[-1.5,-2.5,0]$
5-number of zeros $=m=0$
6 -number of asymptotes $=n-m=3-0=3$
8-center of gravity $=A=\frac{\sum \text { poles }-\sum \text { zoles }}{n-m}=\frac{-1-2-3}{3}=-2$ point of intersection of asymptotes with real axis=

9-angles of asymptotes are $=\theta=\frac{ \pm 180(2 R+1)}{n-m}= \pm 60, \pm 180$
10- Points of crossing the imaginary axis as Routh test
Charct.equa $=1+G(S) H(S)=0=S^{3}+6 S^{2}+11 s+6+K$

S^{3}	1	3.75	$\begin{aligned} & 15 \geq K, K \geq 0 \text { then } 0 \leq K \leq 15, K c=15 \\ & S^{3}+4 S^{2}+3.75 S+K=0, S=j \omega \end{aligned}$
S^{2}	4	K	
S	[15-K]/ 4		

S^{0}	K	$\omega=\sqrt{3.75}=1.94 \mathrm{rad} / \mathrm{sec}$
11 - break points (break away or break in) at		
$-\frac{d K}{d S}=0=\frac{d}{d S}\left[\frac{1}{G(S) H(S)}\right]=\frac{d}{d S}[\mathrm{~S} 3+4 \mathrm{~S} 2+3.75 \mathrm{~S}]=3 \mathrm{~S}^{2}+8 \mathrm{~s}+3.75=0$		

$S=-2.1$ refused, $S=-0.6$ is a break- away point
12-break angles at $[\pm 180(2 R+1) / r]$ where $r=$ number of branches(poles for break away or zeros for break in) $\mathrm{R}=0,1,----$ break angles at $[\pm 180] / 2= \pm 90$

13-there is no angle of departure (complex poles)
14- there is no angle of arrival (complex zeros)
15 -sketch the root loci as
16- the damping factor or coefficient ζ is straight line with slope $\Theta=\cos ^{-1} \zeta$ with respect to the negative real axis in the S-plane. $\Theta=\cos ^{-1} 0.7=46$ deg. at the test point (intersection point) $\mathrm{S}_{\mathrm{d}}=-1.13 \pm \mathrm{j} 1.13$

$$
\sum_{n=1}^{n-3}
$$

$$
\sum_{\mathrm{n}=1}^{\mathrm{n}=3} \text { open loc }
$$

19- To find analytically closed loop poles and K as
$\left(\mathrm{S}^{2}+2 \zeta \omega_{\mathrm{n}} \mathrm{S}+\omega_{\mathrm{n}}^{2}\right)(\mathrm{S}+\mathrm{a})=$ characteristic equa. for a third order syst.
Solve

$$
\begin{aligned}
1+G(S) H(S)=0 & =S^{3}+4 S^{2}+3.75 S+K=\left(S^{2}+1.4 \omega_{n} S+\omega_{n}{ }^{2}\right)(S+a) \\
& =S^{3}+\left(1.4 \omega_{n}+a\right) S^{2}+\left(1.4 \omega_{n} a+\omega_{n}^{2}\right) S+\omega_{n}{ }^{2} a \\
1.4 \omega_{n}+a= & 6,, \quad 1.4 \omega_{n} a+\omega_{n}^{2}=11, \ldots, \quad \omega_{n}{ }^{2} a=k+6
\end{aligned}
$$

Prog. >>n=[1];d=[1 43.750$]$; rlocus(n,d), grid

