جامعة بنها كلية الهندسة ببنها قسم الهندسة الكهربية نموذج الإجابة امتحان مادة هندسة التحكم ك ١٢٣ يوم ٦/١٦/ ٢٠١٤ مدرس بالقسم شوقي حامد عرفه

Benha Faculty of Engineering Second Year 2013/2014	ty Time: 3-hours
5 6 6	of Engineering Second Year 2013/2014
Control Engineering (E1236) Elect.Eng.Dept.	ering (E1236) Elect.Eng.Dept.

Solve as much as you can questions in two pages

<u>Q1</u>

Q2

(20marks)

- a- Write a **mathematical model** represents the physical systems shown in Fig.1, and Fig.2?
- b- Find the unity feedback control system represents the system shown in Fig.1 as $R=1\Omega$, L=(1/6)H, C=(1/6)F using **block reduction method**?
- c- Write the most important features of **good** control system?
- d- Write the most important **advantages and disadvantages** of the **open** loop and the **closed** loop control systems?

(20 marks)

Consider a system shown in Fig. 3 H(s) = 1, $G(s) = \frac{K}{S(S+2)}$

- a- Find the steady state static error coefficients?
- b- Find the gain **K** such that the steady state error =0.02?

- c- Find and draw the unit step response as K=4?
- d- Find the **frequency response** and M_r and ω_r as K=4 and r(t)=5 sin ωt ?

P.T.O

<u>Q3</u>

(25 marks)

Consider a system shown in Fig. 3

- a- Prove that the gain margin=∞ db at ∞rad/sec. and the phase margin= 51.8 degrees at 2.36 rad/sec.?
- b- Sketch the **polar plot** as K=9?
- c- Sketch the **Bode plot** as K=9?
- d- Sketch the Nichols plot as K=9?
- e- Write short MATLAB program to solve a, b, c, and d?

<u>Q4</u>

(10 marks)

Consider a system shown in Fig.3

- a- Sketch the complete root locus for positive values of K?
- b- Using the **root locus** plot to find **K** as a damping ratio =**0.7**?
- c- Write short MATLAB program to solve a?

Answer

1- Write a **mathematical model** represents the physical systems shown in Fig.1, and Fig.2?

The algebraic sum of all voltages around a closed loop in an electrical circuit at any given instant is zero

Newton's laws for mechanical systems:

 $ma = \sum F = m\ddot{X} = F - b\dot{X} + KX, \ \sum T = J\ddot{\Theta} = T - b\dot{\Theta} - K\Theta$

Where: m=mass in Kg, a=acceleration in m/sec², F=force in newtons

b-Find the unity feedback control system represents the system shown in Fig.1 as $R=1\Omega$, L=(1/6)H, C=(1/6)F using **block reduction method**?

$$\frac{E_o(s)}{E_i(s)} = \frac{G_{-}(s)}{1+G_{-}(s)H(s)} = \frac{36}{S^2+6S+36}$$

then $G_{-}(s) = \frac{36}{S(S+6)}$, $H(s) = 1$

c-Write the most important features of good control system?

1-simple construction and operation 2-fast response (speed) 3-less cost

4- large accuracy (less error) 5-stable

d-Write the most important advantages and disadvantages of the open loop and the closed loop control systems?

Open loop control system

Advantages of open loop	disadvantages of open loop
1-simple construction	1-disturbances cause errors
2- ease of maintenance	2-changes in calibration cause errors
3-less expensive	3-recalibration is necessary
4-no stability problem	
5-convenient when output is hard to	
measured or economically not feasible	

Closed loop control system

02	(20 marks)
	4-the ability to adjust the response
3-more expensive	3-recalibration is not necessary
2- stability may be a problem	2- has less errors
1-complex construction	1-disturbances do not cause errors
Disadvantages of closed loop	advantages of closed loop

Consider a system shown in Fig. 3 H(s) = 1,
$$G(s) = \frac{K}{S(S+2)}$$

a- Find the steady state static error coefficients?

$$K_p = \lim_{0} G(S) = \lim_{0} \frac{K}{S(S+2)} = \frac{K}{(0)(0+2)} = \infty$$

$$K_{v} = \lim_{0} SG(S) = \lim_{0} \frac{K}{(S+2)} = \frac{K}{(0+2)} = 0.5K$$
$$K_{a} = \lim_{0} S^{2}G(S) = \lim_{0} \frac{SK}{(S+2)} = 0$$

b- Find the gain **K** such that the ramp steady state error =0.02?

$$e_{ss}(t) = 1/K_v = \frac{1}{0.5K} = 0.02, K = 100$$

Routh test as K=100, system is stable

c- Find and draw the **unit step response** as K=4? H(s) = 1, G(s) = $\frac{K}{S(S+2)}$

Step response of a second order system $R(S){=}1{/}s$

$$C(S) = \text{closed loop T.F}(S) * R(S) = \frac{\omega_n^2 R(S)}{S(S^2 + 2\eta \omega_n S + \omega_n^2)} = \frac{4}{S(S^2 + 2S + 4)}$$
$$= \frac{a}{S} + \frac{bs + d}{(S^2 + 2S + 4)} \text{ partial fraction }, \text{ Type equation here.}$$

C(t)= inverse Laplace of the product of closed loop t.f.(S) and R(S)=1/s with zero initial conditions C(t)= L⁻¹[(C(S)]=L⁻¹[closed loop t.f.(S)*R(S)] with zero initial conditions]

 $\eta = 0.5, \omega_{\eta}$

$$C(t) = 1 - \frac{e^{-1}}{\sqrt{1 + \frac{1}{2}}}$$

$$M_{p=e} \frac{\eta \pi}{\sqrt{1-\eta^{2}}} = 0.163, t_{r} = \frac{\pi - \cos^{-1}\eta}{\omega_{d}} = \frac{\pi - \frac{pi}{3}}{1.732} = 1.21 sec,$$
$$t_{p} = \frac{\pi}{\omega_{d}} = 1.81 sec., t_{s} = 4T = \frac{4}{\eta \omega_{n}} = 4sec.$$

d- Find the **frequency response** and M_r and ω_r as K=4 and r(t)=5 sin ωt ?

$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2} = 2\sqrt{1 - 2(0.5)^2} = \frac{1.414 rad}{sec}$$

 $M_r=\frac{1}{2\zeta\sqrt{1-2}}$

-Steps to find frequency Response:

1-the closed loop transfer function =T(s)=C(S)/R(S) =

$$C(S) / R(S) = \frac{G(s)}{1 + G(S)H(S)} = \frac{\omega_n^2}{S^2 + 2\eta\omega_n S + \omega_n^2} = \frac{4}{S^2 + 2S + 4}, \ \omega_n = \frac{2rad}{sec} \ \zeta = 0.5$$

2-the closed loop frequency transfer function =

T (j
$$\omega$$
)=C(j ω)/R(j ω) = $\frac{4}{(j\omega)^2 + 2(j\omega) + 4}$ = M $\sqcup \Phi$ =Re+j imag
 $M = \frac{4}{\sqrt{(4-\omega^2)^2 + 4\omega^2}}$, $\Phi = -\tan^{-1}[2\omega/(4-\omega^2)]$

3-As the input $=r(t) = 5sin\omega t$ then

the response =
$$C(t) = 5Msin(\omega t + \Phi)$$

= $\frac{20}{\sqrt{(4-\omega^2)^2+4\omega^2}}$ sin $[[\omega t - \tan^{-1}[2\omega/(4-\omega^2)]]$

<u>Q3</u>

(25 marks)

Consider a system shown in Fig. 3

a- Prove that the gain margin=∞ db at ∞rad/sec. and the phase margin= 51.8 degrees at 2.36 rad/sec.?

$$G(j\omega)H(j\omega) = \frac{9}{j\omega[(j\omega+3)]} = Me^{j\Phi} = M \sqcup \Phi = Re+j \text{ imag}$$

$$\frac{9}{j\omega[(j\omega+3)]} = \frac{9}{-\omega^2 + j3\omega} = \frac{9(-\omega^2 - j3\omega)}{(\omega^4 + 9\omega^2)} = \frac{-9}{(\omega^2 + 9)} - \frac{27j\omega}{(\omega^4 + 9\omega^2)}$$

$$Real = \frac{-9}{(\omega^2 + 9)} \approx -1$$

$$M = \frac{9}{\omega\sqrt{9+\omega^2}} \quad , \ \Phi = -90 - \tan^{-1}(\omega/3)]$$

$$M_{\omega_g} = \frac{9}{\omega_g\sqrt{9+\omega_g^2}} = 1 , \ \omega_g = 2.36 \text{ rad/sec}$$

$$M_{\omega_p} = \frac{9}{\omega_p\sqrt{9+\omega_p^2}} = 0 \quad G_m = 20\log(1/0) = \infty db$$

$$\Phi_{\omega_p} = -\tan^{-1}(\omega_p) - \tan^{-1}(\omega_p/3) = -180 \text{ deg. } \omega_p = \frac{\omega rad}{sec}.$$

$$\Phi_{\omega_g} = -90 - \tan^{-1}(\omega_g/3)] = -90 - 38 = -128 \text{ deg.}$$

$$\gamma_m = \angle G(j \omega_g) H(j \omega_g) + 180 \text{ deg.} = 180 - 128 = 51.8 deg.$$

Find the table

-180

10⁻¹

ω	0	0.1	1	2.36	3	5	10	∞
Φ	-90	-92	-108.4	-128	-135	-149	-163.3	-180
М	∞	30	2.85	1	0.70	0.3	0.09	0
20logM		29.50	9.1	0	-3.1	-10.21	-21.31	

100

Frequency (rad/s)

10

 10^{2}

<u>Prog.</u> >>n=[9]; d=[1 3 0];

>> nyquist(n,d) >> margin(n,d) >> nichols(n,d)

<u>Q4</u>

(10 marks)

Consider a system shown in Fig.3

- b- Sketch the complete root locus for positive values of K?
- c- Using the **root locus** plot to find **K** as a damping ratio =**0.7**?
- d- Write short MATLAB program to solve a?

Root locus:

1-the root locus is symmetrical about the real axis in the S-plane

2-the open loop TF=G(s) H(s)=G(S) H(S) =K/[S(S+2.5)(S+1.5)]=K/[S³+4S²+3.75S]

3-the root locus starts at the pole and ends at the zero or infinity

4-number of root loci= n=number of poles of the open loop TF = 3 at [-1.5,-2.5,0]

5-number of zeros= m=0

6-number of asymptotes = n-m=3-0=3

8-center of gravity = $A = \frac{\sum poles - \sum zoles}{n-m} = \frac{-1-2-3}{3} = -2$ point of intersection of asymptotes with real axis=

9-angles of asymptotes are = $\Theta = \frac{\pm 180(2R+1)}{n-m} = \pm 60, \pm 180$

10- Points of crossing the imaginary axis as Routh test

Charct.equa=1+G(S)H(S)=0= $S^{3}+6S^{2}+11s+6+K$

S^3	1	3.75	$15 \ge K$, K ≥ 0 then $0 \le K \le 15$, K c= 15
S^2	4	Κ	$S^{3}+4S^{2}+3.75S+K=0$, $S=i\omega$
S	[15-K]/ 4		· J

S^0	K	$\omega = \sqrt{3.75} = 1.94 \text{ rad/sec}$

11- break points (break away or break in) at

$$-\frac{dK}{dS} = 0 = \frac{d}{dS} \left[\frac{1}{G(S)H(S)} \right] = \frac{d}{dS} \left[S3 + 4S2 + 3.75S \right] = 3S^2 + 8s + 3.75 = 0$$

S=-2.1 refused, S=-0.6 is a break- away point

12-break angles at $[\pm 180(2R+1)/r]$ where r=number of branches(poles for break away or zeros for break in) R=0,1,---- break angles at $[\pm 180]/2=\pm 90$

13-there is no angle of departure (complex poles)

14- there is no angle of arrival (complex zeros)

- 15-sketch the root loci as
- 16- the damping factor or coefficient ζ is straight line with slope $\Theta = \cos^{-1} \zeta$

with respect to the negative real axis in the S-plane. $\Theta = \cos^{-1} 0.7 = 46$ deg. at the test point (intersection point) S_d=-1.13±j1.13

angle conditio

magnitude o

 \sum open loc

19- To find analytically closed loop poles and K as

$$\begin{split} (S^2+2\ \zeta\ \omega_n\ S+\ \omega_n^{\ 2})(S+a) = & \text{characteristic equa. for a third order syst.} \\ \text{Solve} & 1+G(S)H(S) = 0 = S^3+4S^2+3.75S+K = (S^2+1.4\ \omega_n\ S+\ \omega_n^{\ 2})(S+a) \\ & = S^3+(1.4\ \omega_n\ +a)S^2+(1.4\ \omega_n\ a+\ \omega_n^{\ 2})S+\ \omega_n^{\ 2}\ a \\ & 1.4\ \omega_n\ +a\ =6\ ,,,, \quad 1.4\ \omega_n\ a+\ \omega_n^{\ 2} = 11\ ,,,, \quad \omega_n^{\ 2}\ a = k+6 \\ & \text{Prog.} & >>n = [1]; d = [1\ 4\ 3.75\ 0]; \ \text{rlocus(n,d), grid} \end{split}$$