

Benha University College of Engineering at Benha Questions For Final Examination Time : $\mathbf{1 2 0}$ min. Subject: Engineerin Economy M561 May/29/ 2019 Fifth year Structural and Electrical engineering Examiner:Dr.Mohamed Elsharnoby

1. Compute the value of $D \& E$ in the diagram, At an interest rate of 10%.

2. Three mutually exclusive alternatives are being considered.

Year	A	B	C
0	$\mathbf{- \$ 2 5 0 0}$	$\mathbf{- \$ 6 0 0 0}$	$\mathbf{- \$ 1 0 0 0 0}$
1	$\$ 750$	$\$ 1700$	$\$ 2700$
2	$\$ 800$	$\$ 1750$	$\$ 2750$
3	$\$ 750$	$\$ 1800$	$\$ 2800$
$\mathbf{4}$	$\$ 900$	$\$ 1850$	$\$ 2850$
5	$\$ 950$	$\$ 1900$	$\$ 2900$

If the minimum attractive rate of return is 8%, which alternative should be selected? Solve the problem by
(a) Present worth analysis
(b) Annual cash flow analysis
(c) Incremental ROR analysis
3)Three mutually exclusive investment alternatives for implementing an office automation plan in an engineering design firm are being considered. The study period is $\mathbf{1 0}$ years, and the useful lives for the three alternatives are also 10 years. Market values of the three alternative are assumed to be zero at the end of their useful lives. If the firms MARR is $\mathbf{1 0 \%}$ per year, which alternative should be selected in the view of the following estimates?

Alternative

	A	B	C
Capital investment	$\mathbf{\$ 3 9 0 , 0 0 0}$	$\mathbf{- \$ 9 2 0 , 0 0 0}$	$\mathbf{- \$ 6 6 0 , 0 0 0}$
Net annual revenues less expenses	$\mathbf{6 9 , 0 0 0}$	$\mathbf{1 6 7 , 0 0 0}$	$\mathbf{1 3 3 , 5 0 0}$

4- Three mutually exclusive alternative public works projects are currently under consideration. Their respective costs and benefits are included in th table below. Each of the projects has a useful life of $\mathbf{5 0}$ years, and the interest rate is $\mathbf{1 0 \%}$ per year. Which if any of these projects should be selected?

Alternative

	A	B	C
Capital investment	$\$ 8,500,000$	$\mathbf{\$ 1 0 , 0 0 0 , 0 0 0}$	$\mathbf{\$ 1 2 , 0 0 0 , 0 0 0}$
Annual oper. \&maint costs	$\mathbf{7 5 0 , 0 0 0}$	$\mathbf{7 2 5 , 0 0 0}$	$\mathbf{7 0 0 , 0 0 0}$
Salvage value	$\mathbf{1 , 2 5 0 , 0 0 0}$	$\mathbf{1 , 7 5 0 , 0 0 0}$	$\mathbf{2 , 0 0 0 , 0 0 0}$
Annual benefits	$\mathbf{2 , 1 5 0 , 0 0 0}$	$\mathbf{2 , 2 6 5 , 0 0 0}$	$\mathbf{2 , 5 0 0 , 0 0 0}$

5-Suppose that your salary is $\$ 35,000$ in year one, will increase at $\mathbf{6 \%}$ per year through year four, and is expressed in actual dollar as follows:

End of year, K	Salary (A\$)
1	$\$ 35,000$
2	$\mathbf{3 7 , 1 0 0}$
3	$\mathbf{3 9 , 3 2 6}$
4	$\mathbf{4 1 , 6 8 5}$

If the general price inflation rate (f) is expected to average 8% per year, what is the real dollar equivalent of these actual dollar salary amounts? Assume that the base dollar value is at year one $(K=1)$
6) The annual maintenance costs of an electric pump this year are estimated to be $\mathbf{\$ 1 , 8 0 0}$. Since the level of maintenance is expected to be the same in the future, these costs will be constant, assuming no inflation. If the pump's life is predicted to be 13 years, find the present equivalent of its maintenance costs when the annual inflation rate is 9% and the annual market rate is $\mathbf{1 2 \%}$. Solve using:
i) Geometric gradient.
ii) Constant-dollar analysis.

$$
\text { GOOD } \quad L \mathbf{U C K}
$$

Note: A table of formulae are on the back of the questions if you need.

- Single Payment formulas:

Compound amount:

$$
\mathbf{F}=\mathbf{P}(\mathbf{1}+\mathbf{i})^{\mathbf{n}}=\mathbf{P}(\mathbf{F} / \mathbf{P}, \mathbf{i}, \mathbf{n})
$$

Present worth: $\quad P=F(\mathbf{1}+\mathbf{i})^{-\mathrm{n}}=\mathrm{F}(\mathbf{P} / \mathbf{F}, \mathbf{i}, \mathbf{n})$

- Uniform Series Formulas:

Compound Amount: $F=A\left\{\left[(1+i)^{n}-1\right] / \mathbf{i}\right\} \quad=A(F / A, i, n)$
Sinking Fund: $\quad A=F\left\{i /\left[(1+i)^{n}-1\right]\right\} \quad=F(A / F, i, n)$
Capital Recovery $A=P\left\{\left[i(1+i)^{n}\right] /\left[(1+i)^{n}-1\right]=P(A / P, i, n)\right.$
Present Worth: $P=A\left\{\left[(1+i)^{n}-1\right] /\left[i(1+i)^{n}\right]\right\}=A(P / A, i, n)$

* Arithmetic Gradient Formulas:
$\begin{array}{ll}\text { Present Worth } P & =G\left\{\left[(1+i)^{n}-i n-1\right] /\left[i^{2}(1+i)^{n}\right]\right\}=G(P / G, i, n) \\ \text { Uniform Series } A & =G\left\{\left[(1+i)^{n}-i n-1\right] /\left[i(1+i)^{n}-i\right]\right\}=G(A / G, i, n)\end{array}$
- Geometric Gradient Formulas:

$$
\begin{array}{ll}
\text { If } \mathbf{i} \neq \mathbf{f g}, & \mathbf{P}=\mathbf{A}\left\{\left[\mathbf{1}-(\mathbf{1}+\mathbf{g})^{\mathbf{n}}(\mathbf{1}+\mathbf{i})^{-\mathrm{n}}\right] /(\mathbf{i}-\mathbf{g})\right\} \\
\text { If } \mathbf{i}=\mathbf{g}, & \mathbf{P}=\mathbf{A}\left[\mathbf{n}(1+\mathbf{i})^{-1}\right] \quad=\mathbf{A}(\mathbf{P} / \mathbf{A}, \mathbf{g}, \mathbf{i}, \mathbf{n}) \\
=\mathbf{A}(\mathbf{P} / \mathbf{A}, \mathbf{g}, \mathbf{i}, \mathbf{n})
\end{array}
$$

Nominal interest rate per year, r : the annual interest rate without considering the effect of any compounding

Effective interest rate per year, i_{a} :

$i_{a}=(1+r / m)^{m}-1=(1+i)^{m}-1$ with $i=r / m$

- Continuous compounding, :

r - one-period interest rate, n - number of periods
$(P / F, r, n)^{\text {inf }}=e^{-r n}$
$(\text { F/P,r,n })^{\text {inf }}=e^{\text {rn }}$

نموذج الاجابة المـادة :اقتصاد هندسى م 561
 الفرقة الخامسة كهرباء
 التاريخ الأربعاء 29 مايو 2019
 أستاذ المادة : د. محمد عبد اللطيف الشرنوبى

(12) Compute the value of $\mathrm{D} \& E$ in the diagram, At an interest rate of 10%.

(A)-

$$
\begin{aligned}
\mathrm{P} & =\$ 200+\$ 100(\mathrm{P} / \mathrm{A}, 10 \%, 3)+\$ 100(\mathrm{P} / \mathrm{G}, 10 \%, 3)+\$ 300(\mathrm{~F} / \mathrm{P}, 10 \%, 3)+ \\
& \$ 200(\mathrm{~F} / \mathrm{P}, 10 \%, 2)+\$ 100(\mathrm{~F} / \mathrm{P}, 10 \%, 1) \\
& =\$ 200+\$ 100(2.487)+\$ 100(2.329)+\$ 300 \\
& (1.331)+\$ 200(1.210)+\$ 100(1.100) \\
& =\$ 1,432.90 \\
\mathrm{E} & =\$ 1,432.90(\mathrm{~A} / \mathrm{P}, 10 \%, 2)=\$ 1,432.90(0.5762)=\$ 825.64 \quad \$ 200
\end{aligned}
$$

(B)-

Present Worth of gradient series:

$$
\begin{aligned}
\mathrm{P} & =\$ 100(\mathrm{P} / \mathrm{G}, 10 \%, 4)=\$ 100(4.378) \\
& =\$ 437.80 \\
\mathrm{D} & =\$ 437.80(\mathrm{~A} / \mathrm{F}, 10 \%, 4) \\
& =\$ 4.7 .80(0.2155) \\
& =\$ 94.35
\end{aligned}
$$

Problem \#1

(A)

(B)

(C)

N	Single Payment		Equal Payment Series				Gradient Series		
	Compound Amount Factor (F/P,i,N)	Present Worth Factor ($\mathbf{P} / F, i, N$)	Compound Amount Factor (F/A,i,N)	Sinking Fund Factor (A/F,i,N)	Present Worth Factor (P/A,i,N)	Capital Recovery Factor (A/P,i,N)	Gradient Uniform Series $(A / G, i, N)$	Gradient Present Worth ($P / G, i, N$)	N
1	1.0800	0.9259	1.0000	1.0000	0.9259	1.0800	0.0000	0.0000	1
2	1.1664	0.8573	2.0800	0.4808	1.7833	0.5608	0.4808	0.8573	2
3	1.2597	0.7938	3.2464	0.3080	2.5771	0.3880	0.9487	2.4450	3
4	1.3605	0.7350	4.5061	0.2219	3.3121	0.3019	1.4040	4.6501	4
5	1.4693	0.6806	5.8666	0.1705	3.9927	0.2505	1.8465	7.3724	5

(a) $\mathrm{NPW}_{\mathrm{A}}=-\$ 2500+\$ 750(\mathrm{P} / \mathrm{A}, 8 \%, 5)+\$ 50(\mathrm{P} / \mathrm{G}, \mathbf{8 \%}, 5)$
$=-\$ 2500+\$ 750 \times 3.9927+\$ 50 \times 7.3724=\$ 863$
$\mathrm{NPW}_{\mathrm{B}}=-\$ 6000+\$ 1700(\mathrm{P} / \mathrm{A}, 8 \%, 5)+\$ \mathbf{5 0}(\mathrm{P} / \mathrm{G}, 8 \%, 5)$
$=-\$ 6000+\$ 1700 \times 3.9927+\$ 5 \quad \mathrm{EUAB}_{\mathrm{A}}=750+50(\mathrm{P} / \mathrm{G}<8 \%, 5) *(\mathrm{~A} / \mathrm{P}, 8 \%, 5)$
$=750+50 * 7.3724 * 0.2505=\$ 842.34$
EUAW $_{A}=-626.25+842.34=\$ 216$
0x7.3724 = \$ 1156
$\mathrm{NPW}_{\mathrm{C}}=-\$ 10000+\$ 2700(\mathrm{P} / \mathrm{A}, 8 \%, 5)+\$ \mathbf{5 0}(\mathrm{P} / \mathrm{G}, 8 \%, 5)$
$=-\$ 10000+\$ 2700 \times 3.9927+\$ 50 \times 7.3724=\$ 1149$
Chose B
b) EUAC $_{A}=2500 \times 0.2505=\$ 626.25$

EUAB $_{\text {A }}=750+50(\mathrm{P} / \mathrm{G}, 8 \%, 5) *(\mathrm{~A} / \mathrm{P}, \mathbf{8 \%}, 5)$

$$
=750+50 * 7.3724 * 0.2505=\$ 842.34
$$

EUAW $_{A}=-626.25+842.34=\$ 216$
EUAC $_{\text {B }}=6000 \times 0.2505=\$ 1503$
$\mathrm{EUAB}_{\mathrm{B}}=1700+50(\mathrm{P} / \mathrm{G}, 8 \%, 5) *(\mathrm{~A} / \mathrm{P}, 8 \%, 5)$

$$
=1700+50 * 7.3724 * 0.2505=\$ 1792.34
$$

EUAW $_{\text {B }}=-1503+1792.34=\$ 289.34$
EUAC $_{C}=10000 \times 0.2505=\$ 2505$
$\mathrm{EUAB}_{\mathrm{C}}=2700+\mathbf{5 0}(\mathrm{P} / \mathrm{G}, 8 \%, 5) *(\mathrm{~A} / \mathrm{P}, 8 \%, 5)$

$$
=2700+50 * 7.3724 * 0.2505=\$ 2792.34
$$

EUAW $_{C}=-2505+2792.34=\$ 287.34$
CHHOSE B
C- Incremental analysis
B-A
$\mathrm{NPW}_{\mathrm{B}}{ }^{-} \mathrm{A}=-\$ 3500+\$ 950(\mathrm{P} / \mathrm{A}, 8 \%, 5)=-\mathbf{3 5 0 0}+\mathbf{9 5 0 * 3 . 9 9 2 7 = \$ 2 9 3}$
Choose B
C-B
NPW $_{\text {C-B }}=-\$ 4000+1000 \times 3.9927=-\$ 7.3$
Choose B

Problem \# 3-For alternative A
$(\mathrm{A} / \mathrm{P}, \mathrm{I}, 10)=\mathbf{0 . 1 7 6 9 2 3}$ From table interest rate is approximately $=\mathbf{1 2 \%}$
-For alternative B
$(\mathrm{A} / \mathrm{P}, \mathrm{I}, 10)=\mathbf{0 . 1 8 1 5 2 1 7 4}$ From table interest rate is approximately $\mathbf{= 1 2 . 6 \%}$
-For alternative C
(A/P,I,10) $=\mathbf{0 . 2 0 2 2 7 2 7 2 7}$ From table interest rate is approximately $=\mathbf{1 5 . 6 \%}$
Alternative \mathbf{C} has the maximum rate of return
$\Delta \mathrm{A} / \Delta \mathrm{P}=\mathbf{3 4 0 0 0} / \mathbf{2 6 0 , 0 0 0}=\mathbf{0 . 1 3 0 7 7}$
The internal rate of return is $\mathbf{< 6 \%}<$ MARR
Alternative \mathbf{C} is chosen.
4-We shall calculate the equivalent annual cos and benefits of each
For alternative A
EACA $=8,500,000 \times(\mathbf{A} / \mathbf{P}, 10 \%, 50)+\mathbf{7 5 0 , 0 0 0}=8,500,000 \times 0.1009+750,000=\$ 1,607,650$
EABA $=\mathbf{1 , 2 5 0 , 0 0 0 x}(\mathbf{A} / \mathbf{F}, 10 \%, 50)+\mathbf{2 . 1 5 0 , 0 0 0}=\mathbf{1 , 2 5 0 , 0 0 0 x} 0.0009+\mathbf{2 . 1 5 0 , 0 0 0 = \$ 2 1 5 1 1 2 5}$
Benfit/cost ratio of $\mathbf{A}=\mathbf{2 1 5 1 1 2 5} / \mathbf{1 , 6 0 7 , 6 5 0}=\mathbf{1 . 3 3 8 0 5 5 5}$
For alternative B
EACB=10,000,000x(A/P,10\%,50)+750,000=10,000,000x 0.1009+725,000=\$1734000
EABA $=\mathbf{1 , 2 5 0 , 0 0 0 x}(\mathbf{A} / \mathbf{F}, \mathbf{1 0 \%}, \mathbf{5 0})+\mathbf{2 . 1 5 0 , 0 0 0 = 1 , 7 5 0 , 0 0 0 x} 0.0009+\mathbf{2 . 2 6 5 , 0 0 0 = \$ 2 2 6 6 5 7 5}$
Benfit/cost ratio of $\mathbf{B}=\mathbf{2 2 6 6 5 7 5}$ / 1734000=1.3071367
For alternative C
EACC $=\mathbf{1 2 , 0 0 0 , 0 0 0 x}(\mathbf{A} / \mathbf{P}, \mathbf{1 0 \%}, \mathbf{5 0})+\mathbf{7 0 0 , 0 0 0}=\mathbf{1 2 , 0 0 0 , 0 0 0 x} 0.1009+\mathbf{7 0 0 , 0 0 0 = \$ 1 , 9 1 0 , 8 0 0}$
$\mathbf{E A B C}=\mathbf{2 , 0 0 0 , 0 0 0} \times(\mathbf{A} / \mathbf{F}, \mathbf{1 0 \%}, \mathbf{5 0})+\mathbf{2 . 5 0 0 , 0 0 0}=\mathbf{2 , 0 0 0 , 0 0 0} \times 0.0009+\mathbf{2 . 5 0 0}, 000=\$ 2501800$
Benfit/cost ratio of $\mathbf{C}=\mathbf{2 5 0 1 8 0 0} / \mathbf{1 , 9 1 0 , 8 0 0}=\mathbf{1 . 3 0 9 2 9 4 5}$
The best alternative is \mathbf{A}

5-

End of year, K	Salary (A\$)	Salary \mathbf{R} R)
$\mathbf{1}$	$\$ \mathbf{3 5 , 0 0 0}$	$\mathbf{\$ 3 5 , 0 0 0}$
$\mathbf{2}$	$\mathbf{3 7 , 1 0 0}$	$\mathbf{3 4 , 3 5 1 . 8 5}$
$\mathbf{3}$	$\mathbf{3 9 , 3 2 6}$	$\mathbf{3 3 , 7 1 5 . 7 0}$
$\mathbf{4}$	$\mathbf{4 1 , 6 8 5}$	$\mathbf{3 3 , 0 9 0 . 9 0}$

6- Using the geometric gradient with real factor $=(1+i) /(1+f)$
If $\mathbf{i} \neq \mathbf{g}, \quad \mathbf{P}=\mathbf{A}\left\{\left[1-(1+g)^{\mathbf{n}}(1+\mathbf{i})^{-\mathbf{n}}\right] /(\mathbf{i}-\mathbf{g})\right\}=\mathbf{A}(\mathbf{P} / \mathbf{A}, \mathrm{g}, \mathbf{i}, \mathrm{n})$
$P=1800 * 9.9132-=-17843.8=1800 * 1.12=\$ 19450$
i) Constant dollar

$$
\mathbf{i}^{\prime}=(\mathbf{i}-\mathbf{f}) /(1+\mathbf{f})=2.75229 \%
$$

Present Worth: $\mathbf{P}=\mathbf{A}\left\{\left[(1+i)^{\mathbf{n}}-1\right] /\left[i(1+i)^{n}\right]\right\} \quad=A(P / A, i, n)$
$P=1800 *(0.42327) /(0.0275229 * 1.42327)=1800 * 10.8054=19450$

