

Benha University
College of engineering at Benha .
Questions For Final Examination
Subject: Engineerin Economy M 1482 29/5/2019
Spec. $4^{\text {th }}$ year All mechanic. Time $: 120 \mathrm{~min}$.
Examiner:Dr.Mohamed Elsharnoby
Note: Attempt all Questions, Number of Questions =6, Number of Pages = 2

1. Compute the value of $\mathrm{D} \& E$ in the diagram, At an interest rate of 10%.
(8 points)

2. Three mutually exclusive alternatives are being considered.
(12 points)

Year	A	B	C
0	$-\$ 2500$	$-\$ 6000$	$-\$ 10000$
1	$\$ 750$	$\$ 1700$	$\$ 2700$
2	$\$ 800$	$\$ 1750$	$\$ 2750$
3	$\$ 750$	$\$ 1800$	$\$ 2800$
4	$\$ 900$	$\$ 1850$	$\$ 2850$
5	$\$ 950$	$\$ 1900$	$\$ 2900$

If the minimum attractive rate of return is 8%, which alternative should be selected? Solve the problem by
(a) Present worth analysis
(b) Annual cash flow analysis
(c) Incremental ROR analysis
3) A shipping firm is considering the purchase of a machine handling system for unloading ships at the dock. The firm has reduced its choice to four different systems, all of whichn are expected to provide the same unloading speed. The initial costs and operating costs
estimated for each system are described below:
(14 points)

System	A	B	C	D
Initial cost	$\$ 650,000$	780,000	600,000	720,000
Annual operating expenses	$\$ 91,810$	73,000	100,000	78,000

The life of each system is estimated to be 5 years, and the firm's MARR is 15%. If the firm must select one of the material handling systems, which one is the most desirable?
i) Solve using the total investment approach.
ii) Solve using an incremental approach.
iii) Assuming the cost estimates are in constant dollars and the Annual inflation rate is expected to be 9%, which system is preferred (use NPW for part iii)
4)-A large heat treating oven (with appurtenances) for powder-coating automobile frames and large pieces of furniture was purchased for $\$ 60,000$.The estimated operating costs, maintenance costs, and salvage values are shown below.
(10 points)

Year	Operating Cost,\$	Maintenance Cost,\$	Salvage Value, \$
1	$--15,000$	-3000	$\mathbf{3 5 . 0 0 0}$
2	$-17,000$	-3000	$\mathbf{3 0 . 0 0 0}$
3	$-19,000$	-3000	$\mathbf{2 5 . 0 0 0 0}$
4	$-21,000$	-3000	$\mathbf{2 0 , 0 0 0}$
5	$-23,000$	-3000	$\mathbf{1 5 , 0 0 0}$

Assuming the interest rate is 10%, determine:
i) The economic service life and the associated annual worth
ii) Determine the marginal total cost of the oven.
5) An Engineering consulting firm can purchase a small electronic computer for $\$ 30,000$. It is estimated that the life and salvage value of the computer will be 6 years and $\$ 4,000$ respectively. Operating expenses are estimated to be $\$ 60$ per day, and maintenance will be performed under contract for $\$ 3,000$ per year. As an alternative sufficient computer time can be rented at an average cost of $\$ 140$ per day. If the interest rate is 10%, how many days per year must the computer be needed to justify its purchase?
(10 points)
6. A $\mathbf{\$ 1 5 , 0 0 0}$ investment will return annual benefits for six years, with no salvage value after six years. Assume straight line depreciation and a 40% income tax rate.
Find, for both before and after-tax , rates of return for Case A, before tax rate of return for case B:
\checkmark Case A: No inflation. The annual benefits are constant at $\$ 3500 /$ year.
\checkmark Case B: Inflation of 5\%: The benefits from the investment is $\$ 3500 /$ year and increase at the same inflation rate.
(14 points)

- Single Payment formulas:

Compound amount:

$$
\begin{gathered}
\mathbf{F}=\mathbf{P}(\mathbf{1}+\mathbf{i})^{\mathbf{n}}=\mathbf{P}(\mathbf{F} / \mathbf{P}, \mathbf{i}, \mathbf{n}) \\
\mathbf{P}=\mathbf{F}\left(\mathbf{1 + \mathbf { i }) ^ { - \mathbf { n } } = \mathbf { F } (\mathbf { P } / \mathbf { F } , \mathbf { i } , \mathbf { n })}\right.
\end{gathered}
$$

Present worth:

- Uniform Series Formulas:

C		$=\mathrm{A}\left\{\left[(1+\mathrm{i})^{\mathrm{n}}-1\right] \mathrm{i}\right\}$	
Sinking Fund:		$A=F\left\{i /\left[(1+i)^{\mathbf{n}}-1\right]\right\}$	F (A/F,i,n)
Capital Recovery	A	$=P\left\{\left[i(1+i)^{\mathbf{n}}\right] /\left[(1+i)^{\mathbf{n}}-1\right.\right.$	P (A/
Present Worth:P		($\left.\left.1+i)^{\mathbf{n}}-1\right] /\left[\mathbf{i}(1+i)^{\mathbf{n}}\right]\right\}$	

- Arithmetic Gradient Formulas:

$$
\begin{array}{ll}
\hline \text { Present Worth P } & =\mathbf{G}\left\{\left[(1+i)^{n}-i n-1\right] /\left[i^{2}(1+i)^{n}\right]\right\}=G(P / G, i, n) \\
\text { Uniform Series A } & =G\left\{\left[(1+i)^{n}-i n-1\right] /\left[i(1+i)^{n}-i\right]\right\}=G(A / G, i, n)
\end{array}
$$

- Geometric Gradient Formulas:

$$
\begin{aligned}
& \text { If } \mathbf{i} \neq \mathbf{g}, \quad \mathbf{P}=\mathbf{A}\left\{\left[1-(1+\mathbf{g})^{\mathbf{n}}(\mathbf{1}+\mathbf{i})^{-\mathbf{n}}\right] /(\mathbf{i}-\mathrm{g})\right\} \quad=\mathbf{A}(\mathbf{P} / \mathbf{A}, \mathbf{g}, \mathbf{i}, \mathrm{n}) \\
& \text { If } \mathbf{i}=\mathbf{g}, \quad \mathbf{P}=\mathbf{A}\left[\mathbf{n}(\mathbf{1}+\mathbf{i})^{-1}\right] \quad=\mathbf{A}(\mathbf{P} / \mathbf{A}, \mathbf{g}, \mathbf{i}, \mathbf{n})
\end{aligned}
$$

- Nominal interest rate per year, r : the annual interest rate without considering the effect of any compounding

Effective interest rate per year, i_{i} :

$i_{a}=(1+r / m)^{m}-1=(1+i)^{m}-1$ with $i=r / m$

- Continuous compounding,
\mathbf{r} - one-period interest rate, \mathbf{n} - number of periods
$(\mathbf{P} / \mathbf{F}, \mathbf{r}, \mathbf{n})^{\text {inf }}=\mathbf{e}^{-\mathrm{rn}}$
$(\mathbf{F} / \mathbf{P}, \mathbf{r}, \mathbf{n})^{\text {inf }}=\mathbf{e}^{\mathrm{rn}}$

نموذج الاجابة المـادة :اقتصاد هندسى م 1482 الفرقةّ الرابعة ميكانيكا
 التاريخ الأربعاء 29 مـايو 2019

أستناذ المادة : د. محمد عبد اللطيف الشرنوبى 29
(12) Compute the value of D\&E in the diagram, At an interest rate of 10%.

(A)-
$\mathrm{P}=\$ 200+\$ 100(\mathrm{P} / \mathrm{A}, 10 \%, 3)+\$ 100(\mathrm{P} / \mathrm{G}, 10 \%, 3)+\$ 300(\mathrm{~F} / \mathrm{P}, 10 \%, 3)+$ $\$ 200(\mathrm{~F} / \mathrm{P}, 10 \%, 2)+\$ 100(\mathrm{~F} / \mathrm{P}, 10 \%, 1)$
$=\$ 200+\$ 100(2.487)+\$ 100(2.329)+\$ 300$ $(1.331)+\$ 200(1.210)+\$ 100(1.100)$

$$
=\$ 1,432.90
$$

$\mathrm{E}=\$ 1,432.90(\mathrm{~A} / \mathrm{P}, 10 \%, 2)=\$ 1,432.90(0.5762)=\$ 825.64$

Problem \#1

(A)

(B)

N	Single Payment		Equal Payment Series				Gradient Series		
	Compound Amount Factor (F/P,i,N)	Present Worth Factor (P/F,i,N)	Compound Amount Factor $(F / A, i, N)$	Sinking Fund Factor (A/F,i,N)	Present Worth Factor ($P / A, i, N$)	Capital Recovery Factor (A/P,i,N)	Gradient Uniform Series (A/G,i,N)	Gradient Present Worth (P/G,i,N)	N
1	1.0800	0.9259	1.0000	1.0000	0.9259	1.0800	0.0000	0.0000	1
2	1.1664	0.8573	2.0800	0.4808	1.7833	0.5608	0.4808	0.8573	2
3	1.2597	0.7938	3.2464	0.3080	2.5771	0.3880	0.9487	2.4450	3
4	1.3605	0.7350	4.5061	0.2219	3.3121	0.3019	1.4040	4.6501	4
5	1.4693	0.6806	5.8666	0.1705	3.9927	0.2505	1.8465	7.3724	5

(a) $\mathrm{NPW}_{\mathrm{A}}=-\$ 2500+\$ 750(\mathrm{P} / \mathrm{A}, 8 \%, 5)+\$ \mathbf{5 0}(\mathrm{P} / \mathrm{G}, \mathbf{8 \%}, 5)$ $=-\$ 2500+\$ 750 \times 3.9927+\$ 50 \times 7.3724=\$ 863$ $\mathrm{NPW}_{\mathrm{B}}=-\$ 6000+\$ 1700(\mathrm{P} / \mathrm{A}, 8 \%, 5)+\$ 50(\mathrm{P} / \mathrm{G}, 8 \%, 5)$
$=-\$ 6000+\$ 1700 \times 3.9927+\$ 5 \quad \mathrm{EUAB}_{\mathrm{A}}=750+50(\mathrm{P} / \mathrm{G}<8 \%, 5) *(\mathrm{~A} / \mathrm{P}, 8 \%, 5)$

$$
=750+50 * 7.3724 * 0.2505=\$ 842.34
$$

EUAW $_{\text {A }}=-626.25+842.34=\$ 216$
0x7.3724 = \$ 1156
$\mathrm{NPW}_{\mathrm{C}}=-\$ 10000+\$ 2700(\mathrm{P} / \mathrm{A}, 8 \%, 5)+\$ \mathbf{5 0}(\mathrm{P} / \mathrm{G}, 8 \%, 5)$
$=-\$ 10000+\$ 2700 \times 3.9927+\$ 50 \times 7.3724=\$ 1149$
Chose B
b) EUAC $_{A}=2500 \times 0.2505=\$ 626.25$

EUAB $_{\text {A }}=750+50(\mathrm{P} / \mathrm{G}, \mathbf{8 \%}, 5) *(\mathrm{~A} / \mathrm{P}, \mathbf{8 \%}, 5)$

$$
=750+50 * 7.3724 * 0.2505=\$ 842.34
$$

EUAW $_{A}=-626.25+842.34=\$ 216$
$E U A C_{B}=6000 x 0.2505=\$ 1503$
$\mathrm{EUAB}_{\mathrm{B}}=1700+50(\mathrm{P} / \mathrm{G}, 8 \%, 5) *(\mathrm{~A} / \mathrm{P}, 8 \%, 5)$

$$
=1700+50 * 7.3724 * 0.2505=\$ 1792.34
$$

EUAW $_{\text {B }}=-1503+1792.34=\$ 289.34$
E^{2} CAC $_{C}=10000 \times 0.2505=\$ 2505$
EUAB $_{C}=2700+50(\mathrm{P} / \mathrm{G}, \mathbf{8 \%}, 5) *(\mathrm{~A} / \mathrm{P}, 8 \%, 5)$

$$
=2700+50 * 7.3724 * 0.2505=\$ 2792.34
$$

EUAW $_{C}=-2505+2792.34=\$ 287.34$
CHHOSE B
C- Incremental analysis
B-A
$\mathrm{NPW}_{\mathrm{B}}-\mathrm{A}=-\$ 3500+\$ 950(\mathrm{P} / \mathrm{A}, 8 \%, 5)=-\mathbf{3 5 0 0}+\mathbf{9 5 0 * 3 . 9 9 2 7 = \$ 2 9 3}$
Choose B
C-B
NPW $_{\text {C-B }}=-\$ 4000+1000 \times 3.9927=-\$ 7.3$
Choose B

$$
\begin{aligned}
3-\mathrm{NP}_{\mathrm{A}}= & -\$ 650,000-\$ 91,810(\mathrm{P} / \mathrm{A}, 15 \%, 5) \\
& =-\$ 650,000-\$ 91,810 \times 3.3522=-\$ 957,765.5 \\
\mathrm{NPW}_{\mathrm{B}}= & -\$ 780,000-\$ 73,000(\mathrm{P} / \mathrm{A}, 15 \%, 5) \\
& =-\$ 780,000-\$ 73,000 \times 3.3522=-\$ 1024,710.6 \\
\mathrm{NPW}_{\mathrm{C}}= & -\$ 600,000-\$ 100,000(\mathrm{P} / \mathrm{A}, 15 \%, 5) \\
& =-\$ 600,000-\$ 100,000 \times 3.3522=-\$ 935,220 \\
\mathrm{NPW}_{\mathrm{D}}= & -\$ 720,000-\$ 78,000(\mathrm{P} / \mathrm{A}, 15 \%, 5) \\
& =-\$ 720,000-\$ 78,000 \times 3.3522=-\$ 981,471.6
\end{aligned}
$$

Choose C minimum cost
ii)Use incremental approach
$\mathrm{NPW}_{\mathrm{A}-\mathrm{C}}=\mathbf{- 5 0 0 0 0}+\mathbf{\$ 1 9 0 x}(\mathrm{P} / \mathrm{A}, 15 \%, 5)=\mathbf{~} \mathbf{\$ 2 5 4 5 . 5}$
Choose C
$\mathrm{NPW}_{\mathrm{D}-\mathrm{C}}=\mathbf{- 1 2 0 , 0 0 0}+\mathbf{2 2 , 0 0 0 x}(\mathrm{P} / \mathrm{A}, \mathbf{1 5 \%}, 5)=\mathbf{-} \mathbf{4 6 , 2 5 1 . 6}$
Choose C
$\mathrm{NPW}_{\text {B-C }}=\mathbf{- 1 8 0 0 0 0}+\mathbf{\$ 2 7 0 0 0 x}(\mathrm{P} / \mathrm{A}, 15 \%, 5)=-\$ \mathbf{8 9 , 4 9 0 . 6}$
Choose C
C is the best
iii) With Constant dollar
$\mathrm{i}=(\mathrm{i}-\mathrm{f}) /(\mathbf{1}+\mathrm{f})=\mathbf{0 . 0 6} / \mathbf{1 . 0 9}=\mathbf{0 . 0 5 5 0 4 5 8} 5.50458 \%$
$\left(\mathbf{P} / \mathrm{A}, \mathrm{i}^{\prime}, 5\right)=\mathbf{4 . 2 6 9 7 5 2 9}$
3- $\mathrm{NPW}_{\mathrm{A}}=-\$ \mathbf{6 5 0 , 0 0 0}-\$ 91,810(\mathrm{P} / \mathrm{A}, 5.50458 \%, 5)$

$$
=-\$ 650,000-\$ 91,810 \times 4.2697529=-\$ 1,042,006
$$

$\mathrm{NPW}_{\mathrm{B}}=-\mathbf{7 8 0 , 0 0 0 - \$ 7 3 , 0 0 0 (P / A , 5 . 5 0 4 5 8 \% , 5)}$

$$
=-\$ 780,000-\$ 73,000 x 4.2697529=-\$ 1,091,692
$$

$\mathrm{NPW}_{\mathrm{C}}=-\$ \mathbf{6 0 0 , 0 0 0}-\$ 100,000(\mathrm{P} / \mathrm{A}, 5.50458 \%, 5)$

$$
=-\$ 600,000-\$ 100,000 \times 4.2697529=-\$ 1,026,975
$$

$\mathrm{NPW}_{\mathrm{D}}=-\$ 720,000-\$ 78,000(\mathrm{P} / \mathrm{A}, 5.50458 \%, 5)$

$$
=-\$ 720,000-\$ 78,000 \times 4.2697529=-\$ 1,053,040
$$

Choose C

Single Payment		Equal Payment Series				Gradient Series		
Compound Amount Factor $(F / P, i, N)$	Present Worth Factor $(P / F, i, N)$	Compound Amount Factor $(F / A, i, N)$	Sinking Fund Factor (A/F,i,N)	Present Worth Factor $(P / A, i, N)$	Capital Recovery Factor $(A / P, i, N)$	Gradient Uniform Series $(A / G, i, N)$	Gradient Present Worth $(P / G, i, N)$	N
1.1500	0.8696	1.0000	1.0000	0.8696	1.1500	0.0000	0.0000	1
1.3225	0.7561	2.1500	0.4651	1.6257	0.6151	0.4651	0.7561	2
1.5209	0.6575	3.4725	0.2880	2.2832	0.4380	0.9071	2.0712	3
1.7490	0.5718	4.9934	0.2003	2.8550	0.3503	1.3263	3.7864	4
2.0114	0.4972	6.7424	0.1483	3.3522	0.2983	1.7228	5.7751	5

Problem 4

Year	Market value	Loss in Market value	Foregone interest	$\begin{gathered} \hline \text { Operati } \\ \text { ng } \\ \text { Cost,\$ } \\ \hline \end{gathered}$	Maintenance Cost,\$	Salvage Value, \$	Total Recovery Cost
0	\$60000						
1	35.000	-\$25000	-\$6000	--15,000	-3000	35.000	-\$49000
2	30.000	-\$5000	-\$3500	-17,000	-3000	30.000	-\$28500
3	25.0000	-\$5000	-\$3000	-19,000	-3000	25.0000	--\$30000
4	20,000	-\$5000	-\$2500	-21,000	-3000	20,000	-\$31500
5	15,000	-\$5000	-\$2000	-23,000	-3000	15,000	--\$33000

The EUAC for two years is $=(49000+28500 /(1+i)) *(A / P, 10 \%, 2)=(49000+28500 /(1+i)) * 5762=(49000$ +25909)*0.5762=-\$43162.6
The EUAC for three years is $\left.=\left(49000+28500 /(1+i)+30000 *(1+i)^{-2}\right)^{*} \mathbf{A} / \mathbf{P}, \mathbf{1 0 \%}, \mathbf{3}\right)=(49000+25909+$ 24793.3)*0.4021 $=-\$ 40090.3$

The EUAC for four years is $\left.=\left(49000+28500 /(1+\mathrm{i})+30000 *(1+\mathrm{i})^{-2}\right)^{*}+31500 *(1+\mathrm{i})^{-3}\right)(\mathrm{A} / \mathrm{P}, 10 \%, 4)=(49000$ $+\mathbf{2 5 9 0 9}+\mathbf{2 4 7 9 3 . 3}+\mathbf{2 3 6 6 6 . 3}) * \mathbf{0 . 3 1 5 5}=-\mathbf{3 8 9 2 2}$
The EUAC for five years is $\left.=\left(49000+28500 /(1+\mathrm{i})+30000 *(1+\mathrm{i})^{-2}\right) *+31500 *(1+\mathrm{i})^{-3}+33000 *(1+\mathrm{i})^{-4}\right)($
$\mathrm{A} / \mathbf{P}, \mathbf{1 0 \%}, \mathbf{5})=(\mathbf{4 9 0 0 0}+\mathbf{2 5 9 0 9}+\mathbf{2 4 7 9 3 . 3}+\mathbf{2 3 6 6 6 . 3}+\mathbf{2 2 5 3 9 . 4}) * \mathbf{0 . 2 6 3 8}=-\$ 38409$
Economic life is 5 years

Year	Market value	EUAC of Capital recovery	Foregone interest	$\begin{gathered} \text { Operati } \\ \text { ng } \\ \text { Cost, } \$ \end{gathered}$	Maintenance Cost,\$	Salvage Value, \$	Total Recovery Cost
0	\$60000						
1	35.000	-\$25000	-\$6000	--15,000	-3000	35.000	-\$49000
2	30.000	-\$5000	-\$3500	-17,000	-3000	30.000	-\$28500
3	25.0000	-\$5000	-\$3000	-19,000	-3000	25.0000	--\$30000
4	20,000	-\$5000	-\$2500	-21,000	-3000	20,000	-\$31500
5	15,000	-\$5000	-\$2000	-23,000	-3000	15,000	--\$33000

For one year
EUAC of Capital recovery for one year $=-\$ 60000 *(A / P, 10 \%, 1)+\$ 35000 *(A / F, 10 \%, 1)$
$=-\$ 66000+\$ 35000=-\$ 31000$
EUAC of Capital recovery for two years =-\$ 60000*(A/P,10\%,2) + \$ 30000*(A/F,10\%,2)
$=-\$ 60000 * 0.5762+\$ 30000 * 0.476=-\$ 20292$
EUAC of Capital recovery for three years $=-\$ 60000^{*}(\mathbf{A} / \mathbf{P}, 10 \%, 3)+\$ 25000 *(\mathbf{A} / \mathbf{F}, \mathbf{1 0 \%}, 3)$
$=-\$ 60000 * 0.4021+\$ 25000 * 0.3021=-\$ 16573.5$
EUAC of Capital recovery for four years $=-\$ \mathbf{6 0 0 0 0} *(\mathrm{~A} / \mathrm{P}, 10 \%, 4)+\$ 20000^{*}(\mathrm{~A} / \mathrm{F}, \mathbf{1 0 \%}, 4)$ $=-\$ 60000 * 0.3155+\$ 20000 * \quad 0.2155=-\$ 14620$

EUAC of Capital recovery for five years $=-\$ \mathbf{6 0 0 0 0} *(\mathrm{~A} / \mathrm{P}, 10 \%, 5)+\$ 15000 *(\mathrm{~A} / \mathrm{F}, \mathbf{1 0 \%}, 5)$ $=-\$ 60000 * 0.2638+\$ 15000 * \quad 0.1638=-\$ 13371$

Year	Market value	EUAC of Capital recovery	$\begin{gathered} \text { Operati } \\ \text { ng } \\ \text { Cost,\$ } \end{gathered}$	$\begin{gathered} \text { Maintenance } \\ \text { Cost } \$ \$ \end{gathered}$	Total EUAC
0	\$60000				
1	35.000	-\$31000	--15,000	-3000	-\$49000
2	30.000	-\$20292	-17,000	-3000	-\$40292
3	25.0000	-\$16573.5	-19,000	-3000	--\$38573
4	20,000	-\$14620	-21,000	-3000	-\$38620
5	15,000	-\$13371	-23,000	-3000	--\$39391

Year	Market value	EUAC of Capital recovery	EUAC OP cost,\$	Maintenance Cost, $\$$	Total EUAC
$\mathbf{0}$	$\$ 60000$				
1	35.000	$-\$ 31000$	$-\mathbf{- 1 5 , 0 0 0}$	$-\mathbf{3 0 0 0}$	$-\$ 49000$
2	30.000	$-\$ 20292$	$-15,932.4$	$-\mathbf{- 3 0 0 0}$	$-\$ 39224.4$
3	25.0000	$-\$ 16573.5$	-16873.2	$-\mathbf{- 3 0 0 0}$	$--\$ 36446.7$
4	20,000	$-\$ 14620$	$-\mathbf{- 1 7 6 3 6}$	$-\mathbf{- 3 0 0 0}$	$-\$ 35256$
5	15,000	$-\$ 13371$	$-\mathbf{- 1 8 6 2 0}$	$\mathbf{- 3 0 0 0}$	$-\mathbf{3 4 9 9 1}$

Economic life is 5 years

Problem 5

Assume that the number of days per year for which the computer should be used is N Annual cost for purchased computer if it works N days :
EUAC $=\mathrm{P}(\mathrm{A} / \mathrm{P}, 10 \%, 6)-\mathrm{SV}(\mathrm{A} / \mathrm{F}, 10 \%, 6)+60 \mathrm{~N}+3000$

$$
\begin{aligned}
& =30,000 \times 0.2297-4000.1296+60 \mathrm{~N}+3000 \\
& =60 \mathrm{~N}+9,372.6
\end{aligned}
$$

The AE should less or equal to the value for renting the computer for N days which is given by: Renting Cost $=140 \mathrm{~N}$
$\therefore 60 N+9372.6 \leq 140 N$

$$
\therefore N \geq \frac{9272.6}{80} \geq 117.15 \rightarrow \therefore N=118
$$

	Single Payment		Equal Payment Series				Gradient Series	
N	Compound Amount Factor ($F / P, i, N$)	Present Worth Factor (P/F,i,N)	Compound Amount Factor ($F / A, i, N$)	Sinking Fund Factor ($A / F, i, N$)	Present Worth Factor (P/A,i,N)	Capital Recovery Factor ($A / P, i, N$)	Gradient Uniform Series $(A / G, i, N)$	Gradient Present Worth ($P / G, i, N$)
1	1.1000	0.9091	1.0000	1.0000	0.9091	1.1000	0.0000	0.0000
2	1.2100	0.8264	2.1000	0.4762	1.7355	0.5762	0.4762	0.8264
3	1.3310	0.7513	3.3100	0.3021	2.4869	0.4021	0.9366	2.3291
4	1.4641	0.6830	4.6410	0.2155	3.1699	0.3155	1.3812	4.3781
5	1.6105	0.6209	6.1051	0.1638	3.7908	0.2638	1.8101	6.8618
6	1.7716	0.5645	7.7156	0.1296	4.3553	0.2296	2.2236	9.6842
-							- .	

10.0\%

Problem 6

\# 6 For Before tax
NPW =Present worth of Benefits - Present worth of cost

$$
\begin{aligned}
& =\mathrm{A}^{*}(\mathrm{P} / \mathrm{A}, \mathrm{I}, 6)-12000=0 \\
& =3500^{*}(\mathrm{P} / \mathrm{A}, \mathrm{I}, 6)-15000=0
\end{aligned}
$$

Required I
$(\mathrm{P} / \mathrm{A}, \mathrm{I}, 6)=4.2857$ and $(\mathrm{A} / \mathrm{P}, \mathrm{I}, 6)=0.2333333$
From Table $10 \% \prec \mathrm{i} \prec 11 \%$
By interpolation $\mathrm{i}=10.75 \%$

For After Tax Rate of return

Year	CF before taxes	SL Depr.	Taxable Inc.	Tax (40\%)	CF after taxes
	(a)	(b)	$(\mathbf{c})=(\mathbf{a})-$ (b)	$\begin{gathered} (\mathrm{d})=- \\ \mathbf{4 0 \%}(\mathrm{c}) \end{gathered}$	(a) + (d)
0	-\$15,000				-\$15,000
1	3500	2500	1000	-400	3100
2	3500	2500	1000	--400	3100
3	3500	2500	1000	-400	3100
4	3500	2500	1000	-400	3100
5	3500	2500	1000	-400	3100
6	3500	2500	1000	-400	3100

For After tax
NPW =Present worth of Benefits - Present worth of cost

$$
\begin{aligned}
& =\mathrm{A}^{*}(\mathrm{P} / \mathrm{A}, \mathrm{I}, 6)-15000=0 \\
& =3100 *(\mathrm{P} / \mathrm{A}, \mathrm{I}, 6)-15000=0
\end{aligned}
$$

Required I
$(\mathrm{P} / \mathrm{A}, \mathrm{I}, 6)=4.8387$ and $(\mathrm{A} / \mathrm{P}, \mathrm{I}, 6)=0.206666$
From Table
$\mathrm{I}=6.5 \%$
They continue to be the equivalent of $\$ 3500$ in Year- 0 based dollars.

Year	Ann. Benefit for both situations, in year-0 based dollars	No Inflation, A\$ received $=\mathbf{R S}$	5% inflation factors	5% inflation, A\$ received (multiblv $\$ 3500$ bv
1	$\$ 3500$	$\$ 3500$	1.05^{1}	$\$ 3675$
2	$\$ 3500$	$\$ 3500$	1.05^{2}	$\$ 3859$
3	$\$ 3500$	$\$ 3500$	1.05^{3}	$\$ 4052$
4	$\$ 3500$	$\$ 3500$	1.05^{4}	$\$ 4254$
5	$\$ 3500$	$\$ 3500$	1.05^{5}	$\$ 4467$
6	$\$ 3500$	$\$ 3500$	1.05^{6}	$\$ 4690$

Before-tax ROR.
CFS (-15000,3500, $3500, \ldots, 3500)$ for case A has ROR $=10.74 \%$.
For case B, first convert the CFS (-12000,3064, 3217,, 3910) into today's constant dollars, which just gives (-12000,2918, 2918,, 2918).
Thus, its ROR for case B is also 10.75%.

Situation	ROR`s before taxes & ROR`s after taxes	
A) No inflation	10.75%	6.5%
B) 5% inflation	10.75%	

